RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2015, Volume 98, Issue 5, Pages 786–789 (Mi mz10898)  

This article is cited in 9 scientific papers (total in 9 papers)

Brief Communications

Uniqueness Theorems for Series in the Franklin System

G. G. Gevorkyan

Yerevan State University

Keywords: Franklin system, trigonometric series, Fourier–Franklin series, Cantor's uniqueness theorem, Dirichlet kernel, convergence in measure.

DOI: https://doi.org/10.4213/mzm10898

Full text: PDF file (342 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2015, 98:5, 847–851

Bibliographic databases:

Received: 26.05.2015

Citation: G. G. Gevorkyan, “Uniqueness Theorems for Series in the Franklin System”, Mat. Zametki, 98:5 (2015), 786–789; Math. Notes, 98:5 (2015), 847–851

Citation in format AMSBIB
\Bibitem{Gev15}
\by G.~G.~Gevorkyan
\paper Uniqueness Theorems for Series in the Franklin System
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 5
\pages 786--789
\mathnet{http://mi.mathnet.ru/mz10898}
\crossref{https://doi.org/10.4213/mzm10898}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3438532}
\elib{http://elibrary.ru/item.asp?id=24850225}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 5
\pages 847--851
\crossref{https://doi.org/10.1134/S0001434615110140}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000369701000014}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953223885}


Linking options:
  • http://mi.mathnet.ru/eng/mz10898
  • https://doi.org/10.4213/mzm10898
  • http://mi.mathnet.ru/eng/mz/v98/i5/p786

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. G. Gevorkyan, “On the uniqueness of series in the Franklin system”, Sb. Math., 207:12 (2016), 1650–1673  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. G. G. Gevorkyan, “Uniqueness Theorem for Multiple Franklin Series”, Math. Notes, 101:2 (2017), 219–229  mathnet  crossref  crossref  mathscinet  isi  elib
    3. K. A. Navasardyan, “Uniqueness theorems for multiple Franklin series”, Uch. zapiski EGU, ser. Fizika i Matematika, 51:3 (2017), 241–249  mathnet  zmath
    4. G. G. Gevorkyan, M. P. Poghosyan, “On recovery of coefficients of Franklin series with a “good” majorant of partial sums”, J. Contemp. Math. Anal.-Armen. Aca., 52:5 (2017), 254–260  crossref  zmath  isi  scopus
    5. G. G. Gevorkyan, K. A. Navasardyan, “On uniqueness of series by general Franklin system”, J. Contemp. Math. Anal., 53:4 (2018), 223–231  crossref  mathscinet  isi  scopus
    6. G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Sb. Math., 209:6 (2018), 802–822  mathnet  crossref  crossref  adsnasa  isi  elib
    7. K. A. Navasardyan, “On a uniqueness theorem for the Franklin system”, Uch. zapiski EGU, ser. Fizika i Matematika, 52:2 (2018), 93–100  mathnet
    8. G. G. Gevorkyan, “Uniqueness theorems for Franklin series”, Proc. Steklov Inst. Math., 303 (2018), 58–77  mathnet  crossref  crossref  isi  elib
    9. G. G. Gevorkyan, “On $M^{\ast}$-sets for series by Franklin system”, J. Contemp. Math. Anal., 53:5 (2018), 276–280  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:269
    Full text:47
    References:47
    First page:47

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019