RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2017, Volume 101, Issue 2, Pages 163–168 (Mi mz10939)  

This article is cited in 4 scientific papers (total in 4 papers)

On Some Matrix Analogs of the Little Fermat Theorem

A. N. Abyzov, I. I. Mukhametgaliev

Kazan (Volga Region) Federal University

Abstract: The rings over which every square matrix is representable as a sum of a nilpotent matrix and a $q$-potent matrix, where $q$ is a positive integer power of a prime, are studied. As consequences, matrix analogs of the little Fermat theorem are obtained.

Keywords: nil clean rings, regular rings, little Fermat theorem.
Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/mzm10939

Full text: PDF file (438 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 101:2, 187–192

Bibliographic databases:

UDC: 512.552
Received: 12.10.2015

Citation: A. N. Abyzov, I. I. Mukhametgaliev, “On Some Matrix Analogs of the Little Fermat Theorem”, Mat. Zametki, 101:2 (2017), 163–168; Math. Notes, 101:2 (2017), 187–192

Citation in format AMSBIB
\Bibitem{AbyMuk17}
\by A.~N.~Abyzov, I.~I.~Mukhametgaliev
\paper On Some Matrix Analogs of the Little Fermat Theorem
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 2
\pages 163--168
\mathnet{http://mi.mathnet.ru/mz10939}
\crossref{https://doi.org/10.4213/mzm10939}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3608014}
\elib{http://elibrary.ru/item.asp?id=28172137}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 2
\pages 187--192
\crossref{https://doi.org/10.1134/S0001434617010229}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000396392700022}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015656506}


Linking options:
  • http://mi.mathnet.ru/eng/mz10939
  • https://doi.org/10.4213/mzm10939
  • http://mi.mathnet.ru/eng/mz/v101/i2/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Sh. Abdolyousefi, H. Chen, “Sums of tripotent and nilpotent matrices”, Bull. Korean Math. Soc., 55:3 (2018), 913–920  crossref  zmath  isi  scopus
    2. S. Breaz, “Matrices over finite fields as sums of periodic and nilpotent elements”, Linear Algebra Appl., 555 (2018), 92–97  crossref  mathscinet  zmath  isi  scopus
    3. S. Breaz, “Endomorphisms of free modules as sums of four quadratic endomorphisms”, Linear Multilinear Algebra, 66:11 (2018), 2215–2217  crossref  mathscinet  zmath  isi  scopus
    4. A. N. Abyzov, “Strongly $q$-nil-clean rings”, Siberian Math. J., 60:2 (2019), 197–208  mathnet  crossref  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:326
    References:50
    First page:51

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020