RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2015, Volume 98, Issue 6, Pages 930–936 (Mi mz10977)  

This article is cited in 3 scientific papers (total in 3 papers)

On Continuous Restrictions of Measurable Multilinear Mappings

E. V. Yurova

Lomonosov Moscow State University

Abstract: This article deals with measurable multilinear mappings on Fréchet spaces and analogs of two properties which are equivalent for a measurable (with respect to gaussian measure) linear functional: (i) there exists a sequence of continuous linear functions converging to the functional almost everywhere; (ii) there exists a compactly embedded Banach space $X$ of full measure such that the functional is continuous on it. We show that these properties for multilinear functions defined on a power of the space $X$ are not equivalent; but property (ii) is equivalent to the apparently stronger condition that the compactly embedded subspace is a power of the subspace embedded in $X$.

Keywords: measurable multilinear form, measurable bilinear form, Gaussian measure, compact embedding, Banach space, Radon probability measure.

Funding Agency Grant Number
Russian Science Foundation 14-11-00196


DOI: https://doi.org/10.4213/mzm10977

Full text: PDF file (418 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2015, 98:6, 977–981

Bibliographic databases:

UDC: 519.2
Received: 27.06.2015

Citation: E. V. Yurova, “On Continuous Restrictions of Measurable Multilinear Mappings”, Mat. Zametki, 98:6 (2015), 930–936; Math. Notes, 98:6 (2015), 977–981

Citation in format AMSBIB
\Bibitem{Yur15}
\by E.~V.~Yurova
\paper On Continuous Restrictions of Measurable Multilinear Mappings
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 6
\pages 930--936
\mathnet{http://mi.mathnet.ru/mz10977}
\crossref{https://doi.org/10.4213/mzm10977}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3438548}
\elib{http://elibrary.ru/item.asp?id=24850273}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 6
\pages 977--981
\crossref{https://doi.org/10.1134/S0001434615110309}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000369701000031}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953204857}


Linking options:
  • http://mi.mathnet.ru/eng/mz10977
  • https://doi.org/10.4213/mzm10977
  • http://mi.mathnet.ru/eng/mz/v98/i6/p930

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. L. M. Arutyunyan, “Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures”, Math. Notes, 101:1 (2017), 31–38  mathnet  crossref  crossref  mathscinet  isi  elib
    3. V. Bogachev, O. Smolyanov, Topological vector spaces and their applications, Springer Monographs in Mathematics, Springer, 2017, 456 pp.  crossref  mathscinet  zmath  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:138
    Full text:31
    References:16
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020