RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 104, Issue 1, Pages 131–147 (Mi mz11075)  

Solutions of Hom-Yang–Baxter Equation from Monoidal Hom-(Co)Algebra Structures

Zhengming Jiao, Gongyu Huang

Henan Normal University

Abstract: A method for constructing solutions of the Hom-Yang–Baxter equations is presented. Thus methods yields a so-called $\alpha$-involutory solution of the Hom-Yang–Baxter equation for every monoidal Hom-(co)algebra structure on a space. Characterizations for solutions of Hom-Yang–Baxter equations arising from monoidal Hom-(co)algebra structures are given, and a monoidal Hom-(co)algebra structure which produces such a solution is constructed.

Keywords: monoidal Hom-algebra, monoidal Hom-coalgebra, Hom-Yang–Baxter equation.

Funding Agency Grant Number
National Natural Science Foundation of China 132300410052
The work was supported by the Natural Science Foundation of Henan Province under grant no. 132300410052.

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/mzm11075

Full text: PDF file (482 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 104:1, 121–134

Bibliographic databases:

UDC: 512.554.517.9
Received: 03.12.2015
Revised: 27.01.2017

Citation: Zhengming Jiao, Gongyu Huang, “Solutions of Hom-Yang–Baxter Equation from Monoidal Hom-(Co)Algebra Structures”, Mat. Zametki, 104:1 (2018), 131–147; Math. Notes, 104:1 (2018), 121–134

Citation in format AMSBIB
\Bibitem{Jiaхуа18}
\by Zhengming~Jiao, Gongyu~Huang
\paper Solutions of Hom-Yang--Baxter Equation from Monoidal Hom-(Co)Algebra Structures
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 1
\pages 131--147
\mathnet{http://mi.mathnet.ru/mz11075}
\crossref{https://doi.org/10.4213/mzm11075}
\elib{http://elibrary.ru/item.asp?id=35276456}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 1
\pages 121--134
\crossref{https://doi.org/10.1134/S0001434618070131}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000446511500013}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054525967}


Linking options:
  • http://mi.mathnet.ru/eng/mz11075
  • https://doi.org/10.4213/mzm11075
  • http://mi.mathnet.ru/eng/mz/v104/i1/p131

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:158
    References:19
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020