Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2016, Volume 100, Issue 6, Pages 807–824 (Mi mz11091)  

This article is cited in 4 scientific papers (total in 4 papers)

On the Squares in the Set of Elements of a Finite Field with Constraints on the Coefficients of Its Basis Expansion

M. R. Gabdullinab

a Lomonosov Moscow State University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: Recent results of S. Dartyge, C. Mauduit, and A. Sárközy concerning the problem of the number of squares among the elements of a finite field with constraints on the coefficients of its basis expansion are strengthened.

Keywords: missing digits, finite field, squares, character sum.

Funding Agency Grant Number
Russian Science Foundation 14-11-00702
This work was supported by the Russian Science Foundation under grant 14-11-00702.


DOI: https://doi.org/10.4213/mzm11091

Full text: PDF file (541 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 101:2, 234–249

Bibliographic databases:

UDC: 517
Received: 01.06.2016
Revised: 24.07.2016

Citation: M. R. Gabdullin, “On the Squares in the Set of Elements of a Finite Field with Constraints on the Coefficients of Its Basis Expansion”, Mat. Zametki, 100:6 (2016), 807–824; Math. Notes, 101:2 (2017), 234–249

Citation in format AMSBIB
\Bibitem{Gab16}
\by M.~R.~Gabdullin
\paper On the Squares in the Set of Elements of a Finite Field with Constraints on the Coefficients of Its Basis Expansion
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 6
\pages 807--824
\mathnet{http://mi.mathnet.ru/mz11091}
\crossref{https://doi.org/10.4213/mzm11091}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588906}
\elib{https://elibrary.ru/item.asp?id=27484939}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 2
\pages 234--249
\crossref{https://doi.org/10.1134/S000143461701028X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000396392700028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015696091}


Linking options:
  • http://mi.mathnet.ru/eng/mz11091
  • https://doi.org/10.4213/mzm11091
  • http://mi.mathnet.ru/eng/mz/v100/i6/p807

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Dietmann, Ch. Elsholtz, I. E. Shparlinski, “Prescribing the binary digits of squarefree numbers and quadratic residues”, Trans. Am. Math. Soc., 369:12 (2017), 8369–8388  crossref  mathscinet  zmath  isi  scopus
    2. C. Swaenepoel, “Trace of products in finite fields”, Finite Fields their Appl., 51 (2018), 93–129  crossref  mathscinet  zmath  isi  scopus
    3. C. Swaenepoel, “Prescribing digits in finite fields”, J. Number Theory, 189 (2018), 97–114  crossref  mathscinet  zmath  isi  scopus
    4. C. Swaenepoel, “On the sum of digits of special sequences in finite fields”, Monatsh. Math., 187:4 (2018), 705–728  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:246
    Full text:18
    References:38
    First page:27

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021