RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2016, Volume 100, Issue 6, Pages 939–946 (Mi mz11112)  

This article is cited in 3 scientific papers (total in 3 papers)

Inverse Problems for First-Order Integro-Differential Operators

V. A. Yurko

Saratov State University

Abstract: Inverse spectral problems for first-order integro-differential operators on a finite interval are studied, the properties of spectral characteristics are established, and uniqueness theorems for solutions of this class of inverse problems are proved.

Keywords: integro-differential operator, inverse spectral problem, uniqueness theorems.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00015
Ministry of Education and Science of the Russian Federation 1.1436.2014К
2014/203, 1617
This work was supported by the Ministry of Education and Science of the Russian Federation (projects no. 1.1436.2014 K and no. 2014/203, 1617) and by the Russian Foundation for Basic Research under grant 16-01-00015.


DOI: https://doi.org/10.4213/mzm11112

Full text: PDF file (438 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2016, 100:6, 876–882

Bibliographic databases:

UDC: 517.984
Received: 02.02.2016
Revised: 05.04.2016

Citation: V. A. Yurko, “Inverse Problems for First-Order Integro-Differential Operators”, Mat. Zametki, 100:6 (2016), 939–946; Math. Notes, 100:6 (2016), 876–882

Citation in format AMSBIB
\Bibitem{Yur16}
\by V.~A.~Yurko
\paper Inverse Problems for First-Order Integro-Differential Operators
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 6
\pages 939--946
\mathnet{http://mi.mathnet.ru/mz11112}
\crossref{https://doi.org/10.4213/mzm11112}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588918}
\elib{http://elibrary.ru/item.asp?id=27484951}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 6
\pages 876--882
\crossref{https://doi.org/10.1134/S0001434616110286}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000391490500028}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007071996}


Linking options:
  • http://mi.mathnet.ru/eng/mz11112
  • https://doi.org/10.4213/mzm11112
  • http://mi.mathnet.ru/eng/mz/v100/i6/p939

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Buterin, S. V. Vasiliev, “On uniqueness of recovering the convolution integro-differential operator from the spectrum of its non-smooth one-dimensional perturbation”, Bound. Value Probl., 2018, 55, 12 pp.  crossref  mathscinet  isi  scopus
    2. Yuldashev T.K., “On Inverse Boundary Value Problem For a Fredholm Integro-Differential Equation With Degenerate Kernel and Spectral Parameter”, Lobachevskii J. Math., 40:2 (2019), 230–239  crossref  isi
    3. T. K. Yuldashev, “Spektralnye osobennosti resheniya odnoi kraevoi zadachi dlya integro-differentsialnogo uravneniya Fredgolma vtorogo poryadka s otrazheniem argumenta”, Izv. IMI UdGU, 54 (2019), 122–134  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:192
    Full text:3
    References:39
    First page:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020