RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2016, Volume 100, Issue 1, Pages 109–117 (Mi mz11127)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of the Fourier Sine Transform of a Function of Bounded Variation

E. R. Liflyand

Bar-Ilan University, Israel

Abstract: For the asymptotic formula for the Fourier sine transform of a function of bounded variation, we find a new proof entirely within the framework of the theory of Hardy spaces, primarily with the use of the Hardy inequality. We show that, for a function of bounded variation whose derivative lies in the Hardy space, every aspect of the behavior of its Fourier transform can somehow be expressed in terms of the Hilbert transform of the derivative.

Keywords: function of bounded variation, Fourier transform, locally absolutely continuous function, Hilbert transform, Hardy space, Hardy inequality, M. Riesz theorem.

DOI: https://doi.org/10.4213/mzm11127

Full text: PDF file (463 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2016, 100:1, 93–99

Bibliographic databases:

UDC: 517.518.5
Received: 02.09.2015

Citation: E. R. Liflyand, “Asymptotics of the Fourier Sine Transform of a Function of Bounded Variation”, Mat. Zametki, 100:1 (2016), 109–117; Math. Notes, 100:1 (2016), 93–99

Citation in format AMSBIB
\Bibitem{Lif16}
\by E.~R.~Liflyand
\paper Asymptotics of the Fourier Sine Transform of a~Function of Bounded Variation
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 1
\pages 109--117
\mathnet{http://mi.mathnet.ru/mz11127}
\crossref{https://doi.org/10.4213/mzm11127}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588831}
\elib{http://elibrary.ru/item.asp?id=26414281}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 1
\pages 93--99
\crossref{https://doi.org/10.1134/S0001434616070087}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000382193300008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983800167}


Linking options:
  • http://mi.mathnet.ru/eng/mz11127
  • https://doi.org/10.4213/mzm11127
  • http://mi.mathnet.ru/eng/mz/v100/i1/p109

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. Liflyand, “The Fourier transform of a function of bounded variation: symmetry and asymmetry”, J. Fourier Anal. Appl., 24:2 (2018), 525–544  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:215
    Full text:16
    References:33
    First page:41

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020