RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2016, Volume 100, Issue 2, Pages 212–228 (Mi mz11131)  

A Factorization Method for Products of Holomorphic Matrix Functions

A. G. Kamalianab

a Yerevan State University
b Institute of Mathematics, National Academy of Sciences of Armenia

Abstract: A class of matrix functions defined on a contour which bounds a finitely connected domain in the complex plane is considered. It is assumed that each matrix function in this class can be explicitly represented as a product of two matrix functions holomorphic in the outer and the inner part of the contour, respectively. The problem of factoring matrix functions in the class under consideration is studied. A constructive method reducing the factorization problem to finitely many explicitly written systems of linear algebraic equations is proposed. In particular, explicit formulas for partial indices are obtained.

Keywords: matrix function, factorization, partial index.

DOI: https://doi.org/10.4213/mzm11131

Full text: PDF file (548 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2016, 100:2, 213–228

Bibliographic databases:

Document Type: Article
UDC: 517.544
Received: 04.09.2015

Citation: A. G. Kamalian, “A Factorization Method for Products of Holomorphic Matrix Functions”, Mat. Zametki, 100:2 (2016), 212–228; Math. Notes, 100:2 (2016), 213–228

Citation in format AMSBIB
\Bibitem{Kam16}
\by A.~G.~Kamalian
\paper A Factorization Method for Products of Holomorphic Matrix Functions
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 2
\pages 212--228
\mathnet{http://mi.mathnet.ru/mz11131}
\crossref{https://doi.org/10.4213/mzm11131}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588839}
\elib{http://elibrary.ru/item.asp?id=26414290}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 2
\pages 213--228
\crossref{https://doi.org/10.1134/S0001434616070178}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000382193300017}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983770642}


Linking options:
  • http://mi.mathnet.ru/eng/mz11131
  • https://doi.org/10.4213/mzm11131
  • http://mi.mathnet.ru/eng/mz/v100/i2/p212

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:103
    References:23
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019