RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2017, Volume 101, Issue 4, Pages 483–502 (Mi mz11155)  

The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II. The Complex Plane

T. Yu. Baiguskarov, B. N. Khabibullin, A. V. Khasanova

Bashkir State University, Ufa

Abstract: Let $u\not\equiv-\infty$ be a subharmonic function in the complex plane. We establish necessary and/or sufficient conditions for the existence of a nonzero entire function $f$ for which the modulus of the product of each of its $k$th derivative $k=0,1,…$, by any polynomial $p$ is not greater than the function $Ce^u$ in the entire complex plane, where $C$ is a constant depending on $k$ and $p$. The results obtained significantly strengthen and develop a number of results of Lars Hörmander (1997).

Keywords: entire function, subharmonic function, integral mean, Riesz measure, counting function.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00024
This work was supported by the Russian Foundation for Basic Research under grant 16-01-00024.

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/mzm11155

Full text: PDF file (678 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 101:4, 590–607

Bibliographic databases:

UDC: 517.53+517.574
Received: 11.03.2016
Revised: 14.06.2016

Citation: T. Yu. Baiguskarov, B. N. Khabibullin, A. V. Khasanova, “The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II. The Complex Plane”, Mat. Zametki, 101:4 (2017), 483–502; Math. Notes, 101:4 (2017), 590–607

Citation in format AMSBIB
\Bibitem{BaiKhaKha17}
\by T.~Yu.~Baiguskarov, B.~N.~Khabibullin, A.~V.~Khasanova
\paper The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 4
\pages 483--502
\mathnet{http://mi.mathnet.ru/mz11155}
\crossref{https://doi.org/10.4213/mzm11155}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3629040}
\elib{http://elibrary.ru/item.asp?id=28931411}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 4
\pages 590--607
\crossref{https://doi.org/10.1134/S000143461703018X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000401454600018}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018841816}


Linking options:
  • http://mi.mathnet.ru/eng/mz11155
  • https://doi.org/10.4213/mzm11155
  • http://mi.mathnet.ru/eng/mz/v101/i4/p483

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers
  • Математические заметки Mathematical Notes
    Number of views:
    This page:225
    References:26
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020