Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 104, Issue 2, Pages 273–288 (Mi mz11236)  

This article is cited in 2 scientific papers (total in 2 papers)

Quasiuniversal Fourier–Walsh Series for the Classes $L^p[0,1]$, $p>1$

A. A. Sargsyan

Russian-Armenian (Slavonic) State University, Yerevan

Abstract: It is proved that, for each number $p>1$, there exists a function $L^1[0,1]$ whose Fourier–Walsh series is quasiuniversal with respect to subseries-signs in the class $L^p[0,1]$ in the sense of $L^p$-convergence.

Keywords: universal series, Fourier coefficients, Walsh system, $L^p$-convergence.

DOI: https://doi.org/10.4213/mzm11236

Full text: PDF file (547 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 104:2, 278–292

Bibliographic databases:

UDC: 517.51
Received: 21.03.2016
Revised: 17.08.2017

Citation: A. A. Sargsyan, “Quasiuniversal Fourier–Walsh Series for the Classes $L^p[0,1]$, $p>1$”, Mat. Zametki, 104:2 (2018), 273–288; Math. Notes, 104:2 (2018), 278–292

Citation in format AMSBIB
\Bibitem{Sar18}
\by A.~A.~Sargsyan
\paper Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 2
\pages 273--288
\mathnet{http://mi.mathnet.ru/mz11236}
\crossref{https://doi.org/10.4213/mzm11236}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3833502}
\elib{https://elibrary.ru/item.asp?id=35410188}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 2
\pages 278--292
\crossref{https://doi.org/10.1134/S0001434618070295}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000446511500029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054553344}


Linking options:
  • http://mi.mathnet.ru/eng/mz11236
  • https://doi.org/10.4213/mzm11236
  • http://mi.mathnet.ru/eng/mz/v104/i2/p273

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Sargsyan A., Grigoryan M., “Universal Functions With Respect to the Double Walsh System For Classes of Integrable Functions”, Anal. Math.  crossref  mathscinet  isi
    2. A. Sargsyan, “On the existence of universal functions with respect to the double walsh system for classes of integrable functions”, Colloq. Math., 161:1 (2020), 111–129  crossref  mathscinet  zmath  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:178
    Full text:6
    References:18
    First page:13

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021