RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2017, Volume 101, Issue 1, Pages 110–115 (Mi mz11330)  

Dirichlet Problem for the Stokes Equation

V. V. Pukhnachovab

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University

Abstract: The paper presents some coercive a priori estimates of the solution of the Dirichlet problem for the linear Stokes equation relating vorticity and the stream function of an axially symmetric flow of an incompressible fluid. This equation degenerates on the axis of symmetry. The method used to obtain the estimates is based on a differential substitution transforming the Stokes equation into the Laplace equation and on the subsequent transition from cylindrical to Cartesian coordinates in three-dimensional space.

Keywords: flow-through problem, Stokes equation, coercive a priori estimates.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation НШ-8146.2016.1


DOI: https://doi.org/10.4213/mzm11330

Full text: PDF file (461 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 101:1, 132–136

Bibliographic databases:

UDC: 517.59+532.517
Received: 28.07.2016

Citation: V. V. Pukhnachov, “Dirichlet Problem for the Stokes Equation”, Mat. Zametki, 101:1 (2017), 110–115; Math. Notes, 101:1 (2017), 132–136

Citation in format AMSBIB
\Bibitem{Puk17}
\by V.~V.~Pukhnachov
\paper Dirichlet Problem for the Stokes Equation
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 1
\pages 110--115
\mathnet{http://mi.mathnet.ru/mz11330}
\crossref{https://doi.org/10.4213/mzm11330}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3598756}
\elib{http://elibrary.ru/item.asp?id=28172130}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 1
\pages 132--136
\crossref{https://doi.org/10.1134/S0001434617010138}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000396392700013}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015698840}


Linking options:
  • http://mi.mathnet.ru/eng/mz11330
  • https://doi.org/10.4213/mzm11330
  • http://mi.mathnet.ru/eng/mz/v101/i1/p110

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:247
    References:41
    First page:46

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020