RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 103, Issue 1, Pages 111–119 (Mi mz11544)  

This article is cited in 2 scientific papers (total in 2 papers)

On the Calabi–Yau Compactifications of Toric Landau–Ginzburg Models for Fano Complete Intersections

V. V. Przyjalkowski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: It is well known that Givental's toric Landau–Ginzburg models for Fano complete intersections admit Calabi–Yau compactifications. We give an alternative proof of this fact. As a consequence of this proof, we obtain a description of the fibers over infinity of the compactified toric Landau–Ginzburg models.

Keywords: Calabi–Yau compactification, toric Landau–Ginzburg model, complete intersection.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005


DOI: https://doi.org/10.4213/mzm11544

Full text: PDF file (487 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 103:1, 104–110

Bibliographic databases:

Document Type: Article
UDC: 512.76
Received: 30.01.2017

Citation: V. V. Przyjalkowski, “On the Calabi–Yau Compactifications of Toric Landau–Ginzburg Models for Fano Complete Intersections”, Mat. Zametki, 103:1 (2018), 111–119; Math. Notes, 103:1 (2018), 104–110

Citation in format AMSBIB
\Bibitem{Prz18}
\by V.~V.~Przyjalkowski
\paper On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 1
\pages 111--119
\mathnet{http://mi.mathnet.ru/mz11544}
\crossref{https://doi.org/10.4213/mzm11544}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3740290}
\zmath{https://zbmath.org/?q=an:06893876}
\elib{http://elibrary.ru/item.asp?id=30762112}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 1
\pages 104--110
\crossref{https://doi.org/10.1134/S0001434618010121}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000427616800012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042313499}


Linking options:
  • http://mi.mathnet.ru/eng/mz11544
  • https://doi.org/10.4213/mzm11544
  • http://mi.mathnet.ru/eng/mz/v103/i1/p111

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. Lunts, V. Przyjalkowski, “Landau-Ginzburg Hodge numbers for mirrors of del Pezzo surfaces”, Adv. Math., 329 (2018), 189–216  mathnet  crossref  mathscinet  zmath  isi
    2. V. V. Przyjalkowski, “Toric Landau–Ginzburg models”, Russian Math. Surveys, 73:6 (2018), 1033–1118  mathnet  crossref  crossref  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:239
    References:16
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019