RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 103, Issue 6, Pages 803–817 (Mi mz11573)  

Finding Solution Subspaces of the Laplace and Heat Equations Isometric to Spaces of Real Functions, and Some of Their Applications

D. N. Bushev, Yu. I. Kharkevich

Lesya Ukrainka East European National University

Abstract: We single out subspaces of harmonic functions in the upper half-plane coinciding with spaces of convolutions with the Abel–Poisson kernel and subspaces of solutions of the heat equation coinciding with spaces of convolutions with the Gauss–Weierstrass kernel that are isometric to the corresponding spaces of real functions defined on the set of real numbers. It is shown that, due to isometry, the main approximation characteristics of functions and function classes in these subspaces are equal to the corresponding approximation characteristics of functions and function classes of one variable.

Keywords: Laplace equation, Abel–Poisson delta kernel, Gauss–Weierstrass delta kernel, heat equation, space of convolutions, Lebesgue point, Hölder's inequality.
Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/mzm11573

Full text: PDF file (512 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 103:6, 869–880

Bibliographic databases:

UDC: 517.5
Received: 02.03.2017
Revised: 05.08.2017

Citation: D. N. Bushev, Yu. I. Kharkevich, “Finding Solution Subspaces of the Laplace and Heat Equations Isometric to Spaces of Real Functions, and Some of Their Applications”, Mat. Zametki, 103:6 (2018), 803–817; Math. Notes, 103:6 (2018), 869–880

Citation in format AMSBIB
\Bibitem{BusKha18}
\by D.~N.~Bushev, Yu.~I.~Kharkevich
\paper Finding Solution Subspaces of the Laplace and Heat Equations
Isometric to Spaces of Real Functions,
and Some of Their Applications
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 6
\pages 803--817
\mathnet{http://mi.mathnet.ru/mz11573}
\crossref{https://doi.org/10.4213/mzm11573}
\elib{http://elibrary.ru/item.asp?id=34940598}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 6
\pages 869--880
\crossref{https://doi.org/10.1134/S0001434618050231}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000436583800023}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049136456}


Linking options:
  • http://mi.mathnet.ru/eng/mz11573
  • https://doi.org/10.4213/mzm11573
  • http://mi.mathnet.ru/eng/mz/v103/i6/p803

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:208
    References:29
    First page:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020