|
This article is cited in 1 scientific paper (total in 1 paper)
Bounded Composition Operator on Lorentz Spaces
N. A. Evseevabc a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
c Peoples Friendship University of Russia, Moscow
Abstract:
We study composition operators on Lorentz spaces. In particular, we obtain necessary and sufficient conditions under which a measurable mapping induces a bounded composition operator.
Keywords:
composition operator, Lorentz spaces, measurable mappings.
Funding Agency |
Grant Number |
Russian Science Foundation  |
16-41-02004 |
This work was carried out at the Peoples' Friendship University of Russia
and
supported
by the Russian Science Foundation
under grant 16-41-02004. |
DOI:
https://doi.org/10.4213/mzm11586
Full text:
PDF file (484 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2017, 102:6, 763–769
Bibliographic databases:
UDC:
517 Received: 16.03.2017 Revised: 30.03.2017
Citation:
N. A. Evseev, “Bounded Composition Operator on Lorentz Spaces”, Mat. Zametki, 102:6 (2017), 836–843; Math. Notes, 102:6 (2017), 763–769
Citation in format AMSBIB
\Bibitem{Evs17}
\by N.~A.~Evseev
\paper Bounded Composition Operator on Lorentz Spaces
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 6
\pages 836--843
\mathnet{http://mi.mathnet.ru/mz11586}
\crossref{https://doi.org/10.4213/mzm11586}
\elib{https://elibrary.ru/item.asp?id=30737870}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 6
\pages 763--769
\crossref{https://doi.org/10.1134/S0001434617110153}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000418838500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039422028}
Linking options:
http://mi.mathnet.ru/eng/mz11586https://doi.org/10.4213/mzm11586 http://mi.mathnet.ru/eng/mz/v102/i6/p836
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
N. A. Evseev, A. V. Menovshchikov, “The Composition Operator on Mixed-Norm Lebesgue Spaces”, Math. Notes, 105:6 (2019), 812–817
|
Number of views: |
This page: | 212 | Full text: | 5 | References: | 36 | First page: | 32 |
|