RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 103, Issue 6, Pages 863–874 (Mi mz11654)  

Rademacher Chaoses in Problems of Constructing Spline Affine Systems

S. F. Lukomskii, P. A. Terekhin, S. A. Chumachenko

Saratov State University

Abstract: The paper considers systems of dilations and translations of spline functions $\psi_m$ each of which is obtained by successive integration and antiperiodization of the previous one and the initial function is the Haar function $\chi$. It is proved that, first, each such function $\psi_m$ is the sum of finitely many series in Rademacher chaoses of odd order and, second, for each $m$, the system of dilations and translations of the function $\psi_m$ constitutes a Riesz basis; moreover, lower and upper Riesz bounds for these systems can be chosen universal, i.e., independent of $m$.

Keywords: Rademacher functions, Rademacher chaos, Haar system, system of dilations and translations, splines, Riesz basis, Riesz bounds.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00152-а
This work was supported by the Russian Foundation for Basic Research under grant 16-01-00152-a.


DOI: https://doi.org/10.4213/mzm11654

Full text: PDF file (508 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 103:6, 919–928

Bibliographic databases:

UDC: 517.51
Received: 25.04.2017

Citation: S. F. Lukomskii, P. A. Terekhin, S. A. Chumachenko, “Rademacher Chaoses in Problems of Constructing Spline Affine Systems”, Mat. Zametki, 103:6 (2018), 863–874; Math. Notes, 103:6 (2018), 919–928

Citation in format AMSBIB
\Bibitem{LukTerChu18}
\by S.~F.~Lukomskii, P.~A.~Terekhin, S.~A.~Chumachenko
\paper Rademacher Chaoses in Problems of Constructing Spline Affine Systems
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 6
\pages 863--874
\mathnet{http://mi.mathnet.ru/mz11654}
\crossref{https://doi.org/10.4213/mzm11654}
\elib{http://elibrary.ru/item.asp?id=34940604}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 6
\pages 919--928
\crossref{https://doi.org/10.1134/S0001434618050280}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000436583800028}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049138877}


Linking options:
  • http://mi.mathnet.ru/eng/mz11654
  • https://doi.org/10.4213/mzm11654
  • http://mi.mathnet.ru/eng/mz/v103/i6/p863

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:221
    References:25
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020