|
Представления группы Клейна, задаваемые четверками полиномов,
ассоциированных с дважды конфлюентным уравнением Гойна
В. М. Бухштаберa, С. И. Тертычныйb a Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
b Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений, п. Менделеево, Московская обл.
Аннотация:
Каноническое представление группы Клейна
$K_4=\mathbb Z_2\oplus\mathbb Z_2$
на пространстве $\mathbb C^*=\mathbb C\setminus\{0\}$
индуцирует представление этой группы в кольце
полиномов Лорана $\mathscr L= C[z,z^{-1}]$, $z\in\mathbb C^*$
и, как следствие, представление группы $K_4$ в группе
автоморфизмов группы $G=GL(4,\mathscr L)$ посредством
поэлементного действия. Рассматривается полупрямое
произведение $\widehat G= G\ltimes K_4$ и реализация
группы $\widehat G$ как группы полулинейных автоморфизмов
свободного $4$-мерного $\mathscr L$-модуля $\mathscr M^4$.
Построено трехпараметрическое семейство
представлений $\mathfrak R$ группы $K_4$ в группе $\widehat G$
и трехпараметрическое семейство элементов
$\mathfrak X\in\mathscr M^4$ с полиномиальными
координатами степеней $2(\ell-1)$, $2\ell$, $2(\ell-1)$, $2\ell$,
где $\ell$ – произвольное фиксированное натуральное число,
один из трех параметров. Показано, что вектор $ \mathfrak X$
для каждого данного набора параметров является неподвижной
точкой соответствующего представления $\mathfrak R$.
Алгоритм вычисления полиномов – компонент вектора $\mathfrak X$ –
был получен в работе авторов, в которой было показано, что
эти полиномы задают явные формулы автоморфизмов пространства
решений специального дважды конфлюентного уравнения Гойна.
Библиография: 6 названий.
Ключевые слова:
полулинейные отображения, кольцо полиномов Лорана,
представления группы Клейна, дважды конфлюентное уравнение Гойна.
DOI:
https://doi.org/10.4213/mzm11682
Полный текст:
PDF файл (654 kB)
Первая страница: PDF файл
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Mathematical Notes, 2018, 103:3, 357–371
Реферативные базы данных:
Тип публикации:
Статья
УДК:
512.715+512.643+517.926.4 Поступило: 18.08.2017 Исправленный вариант: 08.09.2017
Образец цитирования:
В. М. Бухштабер, С. И. Тертычный, “Представления группы Клейна, задаваемые четверками полиномов,
ассоциированных с дважды конфлюентным уравнением Гойна”, Матем. заметки, 103:3 (2018), 346–363; Math. Notes, 103:3 (2018), 357–371
Цитирование в формате AMSBIB
\RBibitem{BucTer18}
\by В.~М.~Бухштабер, С.~И.~Тертычный
\paper Представления группы Клейна, задаваемые четверками полиномов,
ассоциированных с~дважды конфлюентным уравнением Гойна
\jour Матем. заметки
\yr 2018
\vol 103
\issue 3
\pages 346--363
\mathnet{http://mi.mathnet.ru/mz11682}
\crossref{https://doi.org/10.4213/mzm11682}
\elib{http://elibrary.ru/item.asp?id=32641318}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 3
\pages 357--371
\crossref{https://doi.org/10.1134/S0001434618030033}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000430553100003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046353382}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/mz11682https://doi.org/10.4213/mzm11682 http://mi.mathnet.ru/rus/mz/v103/i3/p346
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Просмотров: |
Эта страница: | 146 | Литература: | 12 | Первая стр.: | 12 |
|