RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2019, Volume 105, Issue 3, Pages 364–374 (Mi mz11804)  

The Bombieri Problem for Bounded Univalent Functions

V. G. Gordienkoa, D. V. Prokhorovab

a Saratov State University
b Petrozavodsk State University

Abstract: Bombieri proposed to describe the structure of the sets of values of the initial coefficients of normalized conformal mappings of the disk in a neighborhood of the corner point corresponding to the Koebe function. The Bombieri numbers characterize the limit position of the support hyperplane passing through a critical corner point. In this paper, the Bombieri problem is studied for the class of bounded normalized conformal mappings of the disk, where the role of the Koebe function is played by the Pick function. The Bombieri numbers for a pair of two nontrivial initial coefficients are calculated.

Keywords: univalent function, Bombieri number, Koebe function, Pick function.

Funding Agency Grant Number
Russian Science Foundation 17-11-01229
The work of the second author was supported by the Russian Science Foundation under grant 17-11-01229.

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/mzm11804

Full text: PDF file (456 kB)
First page: PDF file
References: PDF file   HTML file

UDC: 517.54
Received: 20.09.2017

Citation: V. G. Gordienko, D. V. Prokhorov, “The Bombieri Problem for Bounded Univalent Functions”, Mat. Zametki, 105:3 (2019), 364–374

Citation in format AMSBIB
\Bibitem{GorPro19}
\by V.~G.~Gordienko, D.~V.~Prokhorov
\paper The Bombieri Problem for Bounded Univalent Functions
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 3
\pages 364--374
\mathnet{http://mi.mathnet.ru/mz11804}
\crossref{https://doi.org/10.4213/mzm11804}
\elib{http://elibrary.ru/item.asp?id=37045121}


Linking options:
  • http://mi.mathnet.ru/eng/mz11804
  • https://doi.org/10.4213/mzm11804
  • http://mi.mathnet.ru/eng/mz/v105/i3/p364

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:138
    References:12
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019