|
Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
G. D. Solomadin Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Abstract:
A smooth stably complex manifold is said to be totally tangentially/normally split if its stably tangential/normal bundle is isomorphic to a sum of complex line bundles. It is proved that each class of degree greater than 2 in the graded unitary cobordism ring contains a quasitoric totally tangentially and normally split manifold.
Keywords:
complex cobordisms, quasitoric manifold, Bott tower, residues of binomial coefficients.
Funding Agency |
Grant Number |
Russian Science Foundation  |
14-11-00414 |
This work was performed at Steklov Mathematical Institute of
Russian Academy of Sciences and supported by the Russian Science
Foundation under grant no. 14-11-00414. |
DOI:
https://doi.org/10.4213/mzm11818
Full text:
PDF file (580 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Mathematical Notes, 2019, 105:5, 763–780
Bibliographic databases:
UDC:
515.14+515.16 Received: 04.10.2017
Citation:
G. D. Solomadin, “Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring”, Mat. Zametki, 105:5 (2019), 771–791; Math. Notes, 105:5 (2019), 763–780
Citation in format AMSBIB
\Bibitem{Sol19}
\by G.~D.~Solomadin
\paper Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 5
\pages 771--791
\mathnet{http://mi.mathnet.ru/mz11818}
\crossref{https://doi.org/10.4213/mzm11818}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3951596}
\elib{https://elibrary.ru/item.asp?id=37424230}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 5
\pages 763--780
\crossref{https://doi.org/10.1134/S0001434619050134}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000473246800013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068174380}
Linking options:
http://mi.mathnet.ru/eng/mz11818https://doi.org/10.4213/mzm11818 http://mi.mathnet.ru/eng/mz/v105/i5/p771
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 123 | References: | 16 | First page: | 6 |
|