RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 103, Issue 5, Pages 779–784 (Mi mz11862)  

This article is cited in 3 scientific papers (total in 3 papers)

Brief Communications

Diameter of the Berger Sphere

A. V. Podobryaev

Ailamazyan Program Systems Institute of Russian Academy of Sciences

Keywords: Riemannian geometry, Berger sphere, geodesic, cut time, diameter, the group $\operatorname{SU}_2$.

Funding Agency Grant Number
Russian Science Foundation 17-11-01387
This work was supported by the Russian Science Foundation under grant 17-11-01387 and performed in Ailamazyan Institute of Programming Systems, Russian Academy of Sciences.


DOI: https://doi.org/10.4213/mzm11862

Full text: PDF file (343 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 103:5, 846–851

Bibliographic databases:

Document Type: Article
Received: 16.11.2017

Citation: A. V. Podobryaev, “Diameter of the Berger Sphere”, Mat. Zametki, 103:5 (2018), 779–784; Math. Notes, 103:5 (2018), 846–851

Citation in format AMSBIB
\Bibitem{Pod18}
\by A.~V.~Podobryaev
\paper Diameter of the Berger Sphere
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 5
\pages 779--784
\mathnet{http://mi.mathnet.ru/mz11862}
\crossref{https://doi.org/10.4213/mzm11862}
\elib{http://elibrary.ru/item.asp?id=32823054}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 5
\pages 846--851
\crossref{https://doi.org/10.1134/S0001434618050188}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000436583800018}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049139454}


Linking options:
  • http://mi.mathnet.ru/eng/mz11862
  • https://doi.org/10.4213/mzm11862
  • http://mi.mathnet.ru/eng/mz/v103/i5/p779

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. Eldredge, M. Gordina, L. Saloff-Coste, “Left-invariant geometries on SU(2) are uniformly doubling”, Geom. Funct. Anal., 28:5 (2018), 1321–1367  crossref  mathscinet  zmath  isi  scopus
    2. A. V. Podobryaev, “Antipodal Points and Diameter of a Sphere”, Nelineinaya dinam., 14:4 (2018), 579–581  mathnet  crossref
    3. E. A. Lauret, “The smallest Laplace eigenvalue of homogeneous 3-spheres”, Bull. London Math. Soc., 51:1 (2019), 49–69  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:86
    References:8
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019