|
This article is cited in 4 scientific papers (total in 4 papers)
Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space $L_2$ and $n$-Widths
M. Sh. Shabozova, M. S. Saidusajnovb a Dzhuraev Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
b Tajik National University, Dushanbe
Abstract:
We consider the problem of the mean-square approximation of complex functions regular in a domain $\mathscr D\subset\mathbb C$ by Fourier series with respect to an orthogonal (in $\mathscr D$) system of functions $\{\varphi_k(z)\}$, $k=0,1,2,…$ . For the case in which $\mathscr D=ż\in\mathbb C:|z|<1\}$, we obtain sharp estimates for the rate of convergence of the Fourier series in the orthogonal system $ż^k\}$, $k=0,1,2,…$, for classes of functions defined by a special $m$th-order modulus of continuity. Exact values of the series of $n$-widths for these classes of functions are calculated.
Keywords:
Fourier sum, mean-square approximation, generalized modulus of continuity, Jackson–Stechkin inequality, upper bounds for best approximations, $n$-widths.
DOI:
https://doi.org/10.4213/mzm11864
Full text:
PDF file (536 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Mathematical Notes, 2018, 103:4, 656–668
Bibliographic databases:
UDC:
517.5 Received: 23.05.2017
Citation:
M. Sh. Shabozov, M. S. Saidusajnov, “Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space $L_2$ and $n$-Widths”, Mat. Zametki, 103:4 (2018), 617–631; Math. Notes, 103:4 (2018), 656–668
Citation in format AMSBIB
\Bibitem{ShaSai18}
\by M.~Sh.~Shabozov, M.~S.~Saidusajnov
\paper Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 4
\pages 617--631
\mathnet{http://mi.mathnet.ru/mz11864}
\crossref{https://doi.org/10.4213/mzm11864}
\elib{https://elibrary.ru/item.asp?id=32641355}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 4
\pages 656--668
\crossref{https://doi.org/10.1134/S0001434618030343}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000430553100034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046351227}
Linking options:
http://mi.mathnet.ru/eng/mz11864https://doi.org/10.4213/mzm11864 http://mi.mathnet.ru/eng/mz/v103/i4/p617
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
M. Sh. Shabozov, V. D. Sainakov, “O neravenstvakh tipa Kolmogorova v prostranstve Bergmana dlya funktsii dvukh peremennykh”, Tr. IMM UrO RAN, 24, no. 4, 2018, 270–282
-
M. Sh. Shabozov, M. S. Saidusainov, “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. IMM UrO RAN, 25, no. 2, 2019, 258–272
-
M. Sh. Shabozov, M. S. Saidusainov, “Priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam v $L_2$”, Izv. vuzov. Matem., 2020, no. 6, 65–72
-
S. B. Vakarchuk, “Estimates of the Values of $n$-Widths of Classes of Analytic Functions in the Weight Spaces $H_{2,\gamma}(D)$”, Math. Notes, 108:6 (2020), 775–790
|
Number of views: |
This page: | 217 | References: | 25 | First page: | 19 |
|