RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2004, Volume 76, Issue 3, Pages 427–438 (Mi mz119)  

This article is cited in 15 scientific papers (total in 15 papers)

Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients

I. A. Rudakov

M. V. Lomonosov Moscow State University

Abstract: The existence of time-periodic solutions of a nonlinear equation for forced oscillations of a bounded string is proved when the d'Alembert operator has nonconstant coefficients and the nonlinear term has power-law growth.

DOI: https://doi.org/10.4213/mzm119

Full text: PDF file (230 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2004, 76:3, 395–406

Bibliographic databases:

UDC: 517.946
Received: 17.01.2003
Revised: 30.01.2004

Citation: I. A. Rudakov, “Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients”, Mat. Zametki, 76:3 (2004), 427–438; Math. Notes, 76:3 (2004), 395–406

Citation in format AMSBIB
\Bibitem{Rud04}
\by I.~A.~Rudakov
\paper Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 3
\pages 427--438
\mathnet{http://mi.mathnet.ru/mz119}
\crossref{https://doi.org/10.4213/mzm119}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2113085}
\zmath{https://zbmath.org/?q=an:1072.35558}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 3
\pages 395--406
\crossref{https://doi.org/10.1023/B:MATN.0000043467.04680.1d}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000224874900011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-5044249041}


Linking options:
  • http://mi.mathnet.ru/eng/mz119
  • https://doi.org/10.4213/mzm119
  • http://mi.mathnet.ru/eng/mz/v76/i3/p427

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Rudakov, “Nonlinear equations satisfying the nonresonance condition”, J. Math. Sci. (N. Y.), 135:1 (2006), 2749–2763  mathnet  crossref  mathscinet  zmath
    2. I. A. Rudakov, “Periodic solutions of a quasilinear wave equation with variable coefficients”, Sb. Math., 198:7 (2007), 993–1009  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. I. A. Rudakov, “Periodic solutions of a nonlinear wave equation with Neumann and Dirichlet boundary conditions”, Russian Math. (Iz. VUZ), 51:2 (2007), 44–52  mathnet  crossref  mathscinet  zmath  elib
    4. Baldi P., Berti M., “Forced vibrations of a nonhomogeneous string”, SIAM J. Math. Anal., 40:1 (2008), 382–412  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Ji Shuguan, “Time periodic solutions to a nonlinear wave equation with $x$-dependent coefficients”, Calc. Var. Partial Differential Equations, 32:2 (2008), 137–153  crossref  mathscinet  zmath  isi  scopus  scopus
    6. V. A. Kondrat'ev, I. A. Rudakov, “Periodic Solutions of a Quasilinear Wave Equation”, Math. Notes, 85:1 (2009), 34–50  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Ji Shuguan, “Time-periodic solutions to a nonlinear wave equation with periodic or anti-periodic boundary conditions”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465:2103 (2009), 895–913  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Ji Shuguan, “Periodic solutions on the Sturm–Liouville boundary value problem for two-dimensional wave equation”, J. Math. Phys., 50:11 (2009), 113510, 16 pp.  crossref  mathscinet  zmath  isi  scopus  scopus
    9. I. A. Rudakov, “On time-periodic solutions of a quasilinear wave equation”, Proc. Steklov Inst. Math., 270 (2010), 222–229  mathnet  crossref  mathscinet  zmath  isi  elib
    10. Ji Sh., Li Y., “Time Periodic Solutions to the One-Dimensional Nonlinear Wave Equation”, Arch Ration Mech Anal, 199:2 (2011), 435–451  crossref  mathscinet  zmath  isi  elib  scopus
    11. Ji Sh., Gao Ya., Zhu W., “Existence and Multiplicity of Periodic Solutions for Dirichlet?Neumann Boundary Value Problem of a Variable Coefficient Wave Equation”, Adv. Nonlinear Stud., 16:4 (2016), 765–773  crossref  mathscinet  zmath  isi  elib  scopus
    12. Rudakov I.A., “Periodic solutions of the wave equation with nonconstant coefficients and with homogeneous Dirichlet and Neumann boundary conditions”, Differ. Equ., 52:2 (2016), 248–257  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    13. I. A. Rudakov, “Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String”, Math. Notes, 101:1 (2017), 137–148  mathnet  crossref  crossref  mathscinet  isi  elib
    14. Ji Sh., “Periodic Solutions For One Dimensional Wave Equation With Bounded Nonlinearity”, J. Differ. Equ., 264:9 (2018), 5527–5540  crossref  mathscinet  zmath  isi
    15. Ma M., Ji Sh., “Time Periodic Solutions of One-Dimensional Forced Kirchhoff Equations With X-Dependent Coefficients”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 474:2213 (2018), 20170620  crossref  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:364
    Full text:135
    References:49
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020