|
Jackson-Type Inequalities in the Spaces $S^{(p,q)}(\sigma^{m-1})$
R. A. Lasuriya Abkhazian State University
Abstract:
In the case of approximation of functions by using linear methods of summation of their Fourier–Laplace series in the spaces $S^{(p,q)}(\sigma^{m-1})$, $m\ge 3$, for classes of functions defined by transformations of their Fourier–Laplace series using multipliers, Jackson-type inequalities are established in terms of operators which are also defined by the corresponding transformations of the Fourier–Laplace series.
Keywords:
Fourier–Laplace series, linear summation methods, best approximations, convolution.
DOI:
https://doi.org/10.4213/mzm11996
Full text:
PDF file (555 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Mathematical Notes, 2019, 105:5, 707–719
Bibliographic databases:
UDC:
517.5 Received: 13.03.2018 Revised: 27.06.2018
Citation:
R. A. Lasuriya, “Jackson-Type Inequalities in the Spaces $S^{(p,q)}(\sigma^{m-1})$”, Mat. Zametki, 105:5 (2019), 724–739; Math. Notes, 105:5 (2019), 707–719
Citation in format AMSBIB
\Bibitem{Las19}
\by R.~A.~Lasuriya
\paper Jackson-Type Inequalities in the Spaces~$S^{(p,q)}(\sigma^{m-1})$
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 5
\pages 724--739
\mathnet{http://mi.mathnet.ru/mz11996}
\crossref{https://doi.org/10.4213/mzm11996}
\elib{https://elibrary.ru/item.asp?id=37424226}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 5
\pages 707--719
\crossref{https://doi.org/10.1134/S0001434619050079}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000473246800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068170467}
Linking options:
http://mi.mathnet.ru/eng/mz11996https://doi.org/10.4213/mzm11996 http://mi.mathnet.ru/eng/mz/v105/i5/p724
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 156 | References: | 17 | First page: | 11 |
|