RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1999, Volume 66, Issue 4, Pages 624–626 (Mi mz1203)  

This article is cited in 8 scientific papers (total in 8 papers)

Brief Communications

Canonical form of a fourth-degree polynomial in a normal equation of a real hypersurface in $\mathbb C^3$

V. V. Ezhova, A. V. Lobodab, G. Schmalzc

a University of Adelaide
b Voronezh State Academy of Building and Architecture
c University of Bonn, Institute for Applied Mathematics

DOI: https://doi.org/10.4213/mzm1203

Full text: PDF file (167 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1999, 66:4, 513–515

Bibliographic databases:

Received: 02.06.1999

Citation: V. V. Ezhov, A. V. Loboda, G. Schmalz, “Canonical form of a fourth-degree polynomial in a normal equation of a real hypersurface in $\mathbb C^3$”, Mat. Zametki, 66:4 (1999), 624–626; Math. Notes, 66:4 (1999), 513–515

Citation in format AMSBIB
\Bibitem{EzhLobSch99}
\by V.~V.~Ezhov, A.~V.~Loboda, G.~Schmalz
\paper Canonical form of a~fourth-degree polynomial in a~normal equation of a~real hypersurface in~$\mathbb C^3$
\jour Mat. Zametki
\yr 1999
\vol 66
\issue 4
\pages 624--626
\mathnet{http://mi.mathnet.ru/mz1203}
\crossref{https://doi.org/10.4213/mzm1203}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1747090}
\transl
\jour Math. Notes
\yr 1999
\vol 66
\issue 4
\pages 513--515
\crossref{https://doi.org/10.1007/BF02679102}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000086188000035}


Linking options:
  • http://mi.mathnet.ru/eng/mz1203
  • https://doi.org/10.4213/mzm1203
  • http://mi.mathnet.ru/eng/mz/v66/i4/p624

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Loboda, “Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups”, Proc. Steklov Inst. Math., 235 (2001), 107–135  mathnet  mathscinet  zmath
    2. A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups”, Sb. Math., 192:12 (2001), 1741–1761  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. A. V. Loboda, “Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups”, Funct. Anal. Appl., 36:2 (2002), 151–153  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. A. V. Loboda, “Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation”, Math. Notes, 73:3 (2003), 419–423  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. A. V. Loboda, “O razmernostyakh grupp affinnykh preobrazovanii, tranzitivno deistvuyuschikh na veschestvennykh giperpoverkhnostyakh v $\Bbb C^3$”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2014, no. 4(23), 11–35  mathnet
    6. A. V. Atanov, A. V. Loboda, V. I. Sukovykh, “On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$”, Proc. Steklov Inst. Math., 298 (2017), 13–34  mathnet  crossref  crossref  isi  elib  elib
    7. R. S. Akopyan, A. V. Loboda, “O golomorfnykh realizatsiyakh pyatimernykh algebr Li”, Algebra i analiz, 31:6 (2019), 1–37  mathnet
    8. A. V. Atanov, A. V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v $\mathbb{C}^3$”, Materialy Voronezhskoi zimnei matematicheskoi shkoly Sovremennye metody teorii funktsii i smezhnye problemy. 28 yanvarya2 fevralya 2019 g. Chast 4, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 173, VINITI RAN, M., 2019, 86–115  mathnet  crossref
  •  Mathematical Notes
    Number of views:
    This page:383
    Full text:146
    References:37
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020