RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 104, Issue 6, Pages 835–850 (Mi mz12093)  

This article is cited in 2 scientific papers (total in 2 papers)

Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials

S. Yu. Dobrokhotovab, A. V. Tsvetkovaab

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region

Abstract: We discuss two approaches that can be used to obtain the asymptotics of Hermite polynomials. The first, well-known approach is based on the representation of Hermite polynomials as solutions of a spectral problem for the harmonic oscillator Schrödinger equation. The second approach is based on a reduction of the finite-difference equation for the Hermite polynomials to a pseudodifferential equation. Associated with each of the approaches are Lagrangian manifolds that give the asymptotics of Hermite polynomials via the Maslov canonical operator.

Keywords: Hermite polynomial, Lagrangian manifold, Maslov canonical operator, asymptotics, finite-difference equation, Schrödinger equation.

Funding Agency Grant Number
Russian Science Foundation 16-11-10282
This work was supported by the Russian Science Foundation under grant 16-11-10282.

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/mzm12093

Full text: PDF file (623 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 104:6, 810–822

Bibliographic databases:

UDC: 517.928
Received: 14.06.2018

Citation: S. Yu. Dobrokhotov, A. V. Tsvetkova, “Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials”, Mat. Zametki, 104:6 (2018), 835–850; Math. Notes, 104:6 (2018), 810–822

Citation in format AMSBIB
\Bibitem{DobTsv18}
\by S.~Yu.~Dobrokhotov, A.~V.~Tsvetkova
\paper Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 6
\pages 835--850
\mathnet{http://mi.mathnet.ru/mz12093}
\crossref{https://doi.org/10.4213/mzm12093}
\elib{http://elibrary.ru/item.asp?id=36448723}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 6
\pages 810--822
\crossref{https://doi.org/10.1134/S0001434618110263}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454546800026}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059235880}


Linking options:
  • http://mi.mathnet.ru/eng/mz12093
  • https://doi.org/10.4213/mzm12093
  • http://mi.mathnet.ru/eng/mz/v104/i6/p835

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552  crossref  mathscinet  zmath  isi
    2. A. Fedotov, F. Klopp, “Difference equations, uniform quasiclassical asymptotics and Airy functions”, 2018 Days on Diffraction (DD), International Conference on Days on Diffraction (DD) (June 04–08, 2018, St, Petersburg, Russia), IEEE, 2018, 98–101  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:142
    References:30
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019