Matematicheskie Zametki
 RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Forthcoming papers Archive Impact factor Subscription Guidelines for authors License agreement Submit a manuscript Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Mat. Zametki: Year: Volume: Issue: Page: Find

 Mat. Zametki, 2018, Volume 104, Issue 3, Pages 396–406 (Mi mz12111)

2–3 Paths in a Lattice Graph: Random Walks

I. M. Erusalimskyi

Southern Federal University, Rostov-on-Don

Abstract: A lattice graph with 2–3 reachability constraints is considered. The graph's vertices are the points with integer nonnegative coordinates in the plane. Each vertex has two outgoing edges, one entering its immediate right neighbor and the other entering its immediate upper neighbor. The admissible paths for 2–3 reachability are those in which the numbers of edges in all but the last inclusion-maximal straight-line segments are divisible by $2$ for horizontal segments and by $3$ for vertical segments. A formula for the number of 2–3 paths from a vertex to a vertex is obtained. A random walk process on the 2–3 paths in the lattice graph is considered. It is proved that this process can locally be reduced to a Markov process on subgraphs determined by the type of the initial vertex. Formulas for the probabilities of vertex-to-vertex transitions along 2–3 paths are obtained.

Keywords: digraph, lattice graph, random walk, transition probability, vertex reachability.

DOI: https://doi.org/10.4213/mzm12111

Full text: PDF file (490 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 104:3, 395–403

Bibliographic databases:

UDC: 519.1

Citation: I. M. Erusalimskyi, “2–3 Paths in a Lattice Graph: Random Walks”, Mat. Zametki, 104:3 (2018), 396–406; Math. Notes, 104:3 (2018), 395–403

Citation in format AMSBIB
\Bibitem{Eru18} \by I.~M.~Erusalimskyi \paper 2--3 Paths in a Lattice Graph: Random Walks \jour Mat. Zametki \yr 2018 \vol 104 \issue 3 \pages 396--406 \mathnet{http://mi.mathnet.ru/mz12111} \crossref{https://doi.org/10.4213/mzm12111} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=3849089} \elib{https://elibrary.ru/item.asp?id=35410199} \transl \jour Math. Notes \yr 2018 \vol 104 \issue 3 \pages 395--403 \crossref{https://doi.org/10.1134/S0001434618090079} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000451315200007} \scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056740677} 

• http://mi.mathnet.ru/eng/mz12111
• https://doi.org/10.4213/mzm12111
• http://mi.mathnet.ru/eng/mz/v104/i3/p396

 SHARE:

Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. I. M. Erusalimskiy, K. L. Pevneva, “Graphs with table constraints on reachability”, Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 1479, IOP Publishing Ltd, 2020, 012028
•  Number of views: This page: 184 References: 20 First page: 21