RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 104, Issue 3, Pages 396–406 (Mi mz12111)  

2–3 Paths in a Lattice Graph: Random Walks

I. M. Erusalimskyi

Southern Federal University, Rostov-on-Don

Abstract: A lattice graph with 2–3 reachability constraints is considered. The graph's vertices are the points with integer nonnegative coordinates in the plane. Each vertex has two outgoing edges, one entering its immediate right neighbor and the other entering its immediate upper neighbor. The admissible paths for 2–3 reachability are those in which the numbers of edges in all but the last inclusion-maximal straight-line segments are divisible by $2$ for horizontal segments and by $3$ for vertical segments. A formula for the number of 2–3 paths from a vertex to a vertex is obtained. A random walk process on the 2–3 paths in the lattice graph is considered. It is proved that this process can locally be reduced to a Markov process on subgraphs determined by the type of the initial vertex. Formulas for the probabilities of vertex-to-vertex transitions along 2–3 paths are obtained.

Keywords: digraph, lattice graph, random walk, transition probability, vertex reachability.

DOI: https://doi.org/10.4213/mzm12111

Full text: PDF file (490 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 104:3, 395–403

Bibliographic databases:

UDC: 519.1
Received: 02.12.2017

Citation: I. M. Erusalimskyi, “2–3 Paths in a Lattice Graph: Random Walks”, Mat. Zametki, 104:3 (2018), 396–406; Math. Notes, 104:3 (2018), 395–403

Citation in format AMSBIB
\Bibitem{Eru18}
\by I.~M.~Erusalimskyi
\paper 2--3 Paths in a Lattice Graph: Random Walks
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 3
\pages 396--406
\mathnet{http://mi.mathnet.ru/mz12111}
\crossref{https://doi.org/10.4213/mzm12111}
\elib{http://elibrary.ru/item.asp?id=35410199}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 3
\pages 395--403
\crossref{https://doi.org/10.1134/S0001434618090079}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000451315200007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056740677}


Linking options:
  • http://mi.mathnet.ru/eng/mz12111
  • https://doi.org/10.4213/mzm12111
  • http://mi.mathnet.ru/eng/mz/v104/i3/p396

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:164
    References:20
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020