RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 104, Issue 3, Pages 374–395 (Mi mz12112)  

On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation

S. M. Grudskya, A. V. Rybkinb

a Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
b University of Alaska Fairbanks

Abstract: The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller's criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.

Keywords: Hankel operator, trace-class operator, Korteweg–de Vries equation, inverse problem method.

Funding Agency Grant Number
CONACYT - Consejo Nacional de Ciencia y Tecnología 238630
National Science Foundation DMS-1716975
The work of the first author was supported by the grant CONACYT 238630. The work of the second author was supported by the NSF award DMS-1716975.


DOI: https://doi.org/10.4213/mzm12112

Full text: PDF file (642 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 104:3, 377–394

Bibliographic databases:

UDC: 517.957+517.984.2
Received: 05.02.2018

Citation: S. M. Grudsky, A. V. Rybkin, “On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation”, Mat. Zametki, 104:3 (2018), 374–395; Math. Notes, 104:3 (2018), 377–394

Citation in format AMSBIB
\Bibitem{GruRyb18}
\by S.~M.~Grudsky, A.~V.~Rybkin
\paper On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg--de Vries Equation
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 3
\pages 374--395
\mathnet{http://mi.mathnet.ru/mz12112}
\crossref{https://doi.org/10.4213/mzm12112}
\elib{http://elibrary.ru/item.asp?id=35410198}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 3
\pages 377--394
\crossref{https://doi.org/10.1134/S0001434618090067}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000451315200006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056732813}


Linking options:
  • http://mi.mathnet.ru/eng/mz12112
  • https://doi.org/10.4213/mzm12112
  • http://mi.mathnet.ru/eng/mz/v104/i3/p374

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:182
    References:25
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020