RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2019, Volume 106, Issue 1, Pages 74–83 (Mi mz12290)  

The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients

N. N. Konechnajaa, K. A. Mirzoevb

a Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk
b Lomonosov Moscow State University

Abstract: Let $a_1,a_2,…,a_n$, and $\lambda$ be complex numbers, and let $p_1,p_2,…,p_n$ be measurable complex-valued functions on $\mathbb R_+$ ($:=[0,+\infty)$) such that
$$ |p_1|+(1+|p_2-p_1|)\sum_{j=2}^n|p_j| \in L^1_{\mathrm{loc}}(\mathbb R_+). $$
A construction is proposed which makes it possible to well define the differential equation
$$ y^{(n)}+(a_1+p_1(x))y^{(n-1)} +(a_2+p'_2(x)) y^{(n-2)}+\dotsb +(a_n+p'_n(x))y=\lambda y $$
under this condition, where all derivatives are understood in the sense of distributions. This construction is used to show that the leading term of the asymptotics as $x\to +\infty$ of a fundamental system of solutions of this equation and of their derivatives can be determined, as in the classical case, from the roots of the polynomial
$$ Q(z)=z^n+a_1 z^{n-1}+\dotsb+a_n-\lambda, $$
provided that the functions $p_1,p_2,…,p_n$ satisfy certain conditions of integral decay at infinity. The case where $a_1=\dotsb=a_n=\lambda=0$ is considered separately and in more detail.

Keywords: differential equations with distribution coefficients, quasiderivatives, quasidifferential expression, leading term of the asymptotics of solutions of differential equations.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00250
Russian Science Foundation 17-11-01215
The work on Lemma 1 and Theorem 1 was supported by the Russian Science Foundation under grant no. 17-11-01215. The work on the corollary and Theorem 2 was supported by the Russian Foundation for Basic Research under grant no. 18-01-00250.


DOI: https://doi.org/10.4213/mzm12290

Full text: PDF file (519 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2019, 106:1, 81–88

Bibliographic databases:

UDC: 517.928
Received: 13.10.2018
Revised: 16.12.2018

Citation: N. N. Konechnaja, K. A. Mirzoev, “The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients”, Mat. Zametki, 106:1 (2019), 74–83; Math. Notes, 106:1 (2019), 81–88

Citation in format AMSBIB
\Bibitem{KonMir19}
\by N.~N.~Konechnaja, K.~A.~Mirzoev
\paper The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 1
\pages 74--83
\mathnet{http://mi.mathnet.ru/mz12290}
\crossref{https://doi.org/10.4213/mzm12290}
\elib{http://elibrary.ru/item.asp?id=38487781}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 1
\pages 81--88
\crossref{https://doi.org/10.1134/S0001434619070083}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000483778800008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071652402}


Linking options:
  • http://mi.mathnet.ru/eng/mz12290
  • https://doi.org/10.4213/mzm12290
  • http://mi.mathnet.ru/eng/mz/v106/i1/p74

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:94
    References:15
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020