RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2019, Volume 106, Issue 1, Pages 84–94 (Mi mz12339)  

Short Kloosterman Sums with Primes

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: A new estimate of the Kloosterman sum with primes modulo a prime number $q$ is obtained, in which the number of summands can be of order $q^{0.5+\varepsilon}$. This estimate refines results obtained earlier by J. Bourgain (2005) and R. Baker (2012).

Keywords: Kloosterman sum, primes, inverse residues.

Funding Agency Grant Number
Russian Science Foundation 19-11-00001
This work was supported by the Russian Science Foundation under grant 19-11-00001.


DOI: https://doi.org/10.4213/mzm12339

Full text: PDF file (516 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2019, 106:1, 89–97

Bibliographic databases:

UDC: 511.33
Received: 04.02.2019
Revised: 06.02.2019

Citation: M. A. Korolev, “Short Kloosterman Sums with Primes”, Mat. Zametki, 106:1 (2019), 84–94; Math. Notes, 106:1 (2019), 89–97

Citation in format AMSBIB
\Bibitem{Kor19}
\by M.~A.~Korolev
\paper Short Kloosterman Sums with Primes
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 1
\pages 84--94
\mathnet{http://mi.mathnet.ru/mz12339}
\crossref{https://doi.org/10.4213/mzm12339}
\elib{http://elibrary.ru/item.asp?id=38487782}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 1
\pages 89--97
\crossref{https://doi.org/10.1134/S0001434619070095}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000483778800009}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071625649}


Linking options:
  • http://mi.mathnet.ru/eng/mz12339
  • https://doi.org/10.4213/mzm12339
  • http://mi.mathnet.ru/eng/mz/v106/i1/p84

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:128
    References:25
    First page:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019