RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1998, Volume 63, Issue 1, Pages 106–114 (Mi mz1252)  

This article is cited in 6 scientific papers (total in 6 papers)

Surface measures in infinite-dimensional spaces

O. V. Pugachev

M. V. Lomonosov Moscow State University

Abstract: We construct surface measures for surfaces of codimension $n\ge1$ in Banach spaces, and in a wide class of locally convex spaces. It is assumed that the determining function has a continuous derivative along a subspace.

DOI: https://doi.org/10.4213/mzm1252

Full text: PDF file (215 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1998, 63:1, 94–101

Bibliographic databases:

UDC: 517
Received: 02.07.1996

Citation: O. V. Pugachev, “Surface measures in infinite-dimensional spaces”, Mat. Zametki, 63:1 (1998), 106–114; Math. Notes, 63:1 (1998), 94–101

Citation in format AMSBIB
\Bibitem{Pug98}
\by O.~V.~Pugachev
\paper Surface measures in infinite-dimensional spaces
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 1
\pages 106--114
\mathnet{http://mi.mathnet.ru/mz1252}
\crossref{https://doi.org/10.4213/mzm1252}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1631856}
\zmath{https://zbmath.org/?q=an:0939.28003}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 1
\pages 94--101
\crossref{https://doi.org/10.1007/BF02316147}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075520700011}


Linking options:
  • http://mi.mathnet.ru/eng/mz1252
  • https://doi.org/10.4213/mzm1252
  • http://mi.mathnet.ru/eng/mz/v63/i1/p106

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. V. Pugachev, “Construction of non-Gaussian surface measures by the Malliavin method”, Math. Notes, 65:3 (1999), 315–325  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Bogachev, VI, “Surface measures and tightness of (r,p)-capacities on Poisson space”, Journal of Functional Analysis, 196:1 (2002), 61  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Telyatnikov, IV, “Smolyanov-Weizsacker surface measures generated by diffusions on the set of trajectories in Riemannian manifolds”, Infinite Dimensional Analysis Quantum Probability and Related Topics, 11:1 (2008), 21  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Da Prato G., Debussche A., “Estimate for $P_{t}D$ for the stochastic Burgers equation”, Ann. Inst. Henri Poincare-Probab. Stat., 52:3 (2016), 1248–1258  crossref  mathscinet  zmath  isi  scopus
    5. Bogachev V.I., Malofeev I.I., “Surface Measures Generated by Differentiable Measures”, Potential Anal., 44:4 (2016), 767–792  crossref  mathscinet  zmath  isi  elib  scopus
    6. Da Prato G., Debussche A., “An integral inequality for the invariant measure of a stochastic reaction?diffusion equation”, J. Evol. Equ., 17:1, SI (2017), 197–214  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:254
    Full text:122
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020