|
Матем. заметки, 2020, том 108, выпуск 2, статья опубликована в англоязычной версии журнала
(Mi mz12591)
|
|
|
|
Статьи, опубликованные в английской версии журнала
Asymptotic Expansions at Nonsymmetric Cuspidal Points
I. Ly, N. Tarkhanov Institute of Mathematics, Potsdam, 14476 Germany
Аннотация:
We study the asymptotics of solutions to the Dirichlet problem in a domain
$\mathcal{X}
\subset \mathbb{R}^3$
whose
boundary contains a singular point
$O$.
In a small neighborhood of this point, the domain has the form
$\{ z > \sqrt{x^2 + y^4}
\}$,
i.e., the origin is a nonsymmetric conical point at the boundary.
So far, the behavior of solutions to elliptic boundary-value problems has not been studied sufficiently
in the case of nonsymmetric singular points.
This problem was posed by V.A. Kondrat'ev in 2000.
We establish a complete asymptotic expansion of solutions near the singular point.
Ключевые слова:
Dirichlet problem, singular points, asymptotic expansions.
Англоязычная версия:
Mathematical Notes, 2020, 108:2, 219–228
Реферативные базы данных:
Тип публикации:
Статья Поступило: 20.10.2019
Язык публикации: английский
Образец цитирования:
I. Ly, N. Tarkhanov, “Asymptotic Expansions at Nonsymmetric Cuspidal Points”, Math. Notes, 108:2 (2020), 219–228
Цитирование в формате AMSBIB
\Bibitem{LyTar20}
\by I.~Ly, N.~Tarkhanov
\paper Asymptotic Expansions at Nonsymmetric Cuspidal Points
\jour Math. Notes
\yr 2020
\vol 108
\issue 2
\pages 219--228
\mathnet{http://mi.mathnet.ru/mz12591}
\crossref{https://doi.org/10.1134/S0001434620070238}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000556090300023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088999615}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/mz12591
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Просмотров: |
Эта страница: | 20 |
|