Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2020, Volume 107, Issue 1, Pages 106–111 (Mi mz12605)  

On Lie Ideals and Automorphisms in Prime Rings

N. Rehman

Aligarh Muslim University

Abstract: Let $R$ be a prime ring of characteristic different from $2$ with center $Z$ and extended centroid $C$, and let $L$ be a Lie ideal of $R$. Consider two nontrivial automorphisms $\alpha$ and $\beta$ of $R$ for which there exist integers $m,n\ge 1$ such that $\alpha(u)^n+\beta(u)^m=0$ for all $u\in L$. It is shown that, under these assumptions, either $L$ is central or $R\subseteq M_2(C)$ (where $M_2(C)$ is the ring of $2 \times 2$ matrices over $C$), $L$ is commutative, and $u^{2} \in Z$ for all $u \in L$. In particular, if $L = [R,R]$, then $R$ is commutative.

Keywords: prime ring, Lie ideal, automorphism.

DOI: https://doi.org/10.4213/mzm12605

Full text: PDF file (413 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2020, 107:1, 140–144

Bibliographic databases:

UDC: 512
Received: 14.02.2018

Citation: N. Rehman, “On Lie Ideals and Automorphisms in Prime Rings”, Mat. Zametki, 107:1 (2020), 106–111; Math. Notes, 107:1 (2020), 140–144

Citation in format AMSBIB
\Bibitem{Reh20}
\by N.~Rehman
\paper On Lie Ideals and Automorphisms in Prime Rings
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 1
\pages 106--111
\mathnet{http://mi.mathnet.ru/mz12605}
\crossref{https://doi.org/10.4213/mzm12605}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4045690}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 1
\pages 140--144
\crossref{https://doi.org/10.1134/S0001434620010137}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000519555100013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85081040778}


Linking options:
  • http://mi.mathnet.ru/eng/mz12605
  • https://doi.org/10.4213/mzm12605
  • http://mi.mathnet.ru/eng/mz/v107/i1/p106

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:159
    References:10
    First page:6

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021