RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1998, Volume 63, Issue 3, Pages 323–331 (Mi mz1286)  

This article is cited in 6 scientific papers (total in 6 papers)

Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation

U. G. Abdullaev

Baku State University

Abstract: We study the effect of shrinking of the support of a solution to a nonlinear parabolic equation with strong heat drain at low temperatures.

DOI: https://doi.org/10.4213/mzm1286

Full text: PDF file (191 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1998, 63:3, 285–292

Bibliographic databases:

UDC: 517.958
Received: 13.07.1994
Revised: 10.09.1997

Citation: U. G. Abdullaev, “Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation”, Mat. Zametki, 63:3 (1998), 323–331; Math. Notes, 63:3 (1998), 285–292

Citation in format AMSBIB
\Bibitem{Abd98}
\by U.~G.~Abdullaev
\paper Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 3
\pages 323--331
\mathnet{http://mi.mathnet.ru/mz1286}
\crossref{https://doi.org/10.4213/mzm1286}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1631916}
\zmath{https://zbmath.org/?q=an:0920.35083}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 3
\pages 285--292
\crossref{https://doi.org/10.1007/BF02317772}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075783100001}


Linking options:
  • http://mi.mathnet.ru/eng/mz1286
  • https://doi.org/10.4213/mzm1286
  • http://mi.mathnet.ru/eng/mz/v63/i3/p323

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Winkler M., “Instantaneous Shrinking of the Support in Degenerate Parabolic Equations with Strong Absorption”, Adv. Differ. Equat., 9:5-6 (2004), 625–643  mathscinet  zmath  isi
    2. S. P. Degtyarev, “Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption”, Sb. Math., 199:4 (2008), 511–538  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Degtyarev, SP, “On the instantaneous shrinking of the support of a solution to the Cauchy problem for an anisotropic parabolic equation”, Ukrainian Mathematical Journal, 61:5 (2009), 747  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Ye H., Yin J., “Instantaneous shrinking and extinction for a non-Newtonian polytropic filtration equation with orientated convection”, Discrete Contin. Dyn. Syst.-Ser. B, 22:4 (2017), 1743–1755  crossref  mathscinet  zmath  isi  scopus
    5. Iagar R.G., Laurencot Ph., Stinner Ch., “Instantaneous Shrinking and Single Point Extinction For Viscous Hamilton–Jacobi Equations With Fast Diffusion”, Math. Ann., 368:1-2 (2017), 65–109  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Iagar R.G., Laurencot Ph., “Optimal Extinction Rates For the Fast Diffusion Equation With Strong Absorption”, Bull. London Math. Soc., 50:4 (2018), 635–648  crossref  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:245
    Full text:63
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019