RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1998, Volume 63, Issue 3, Pages 343–353 (Mi mz1288)  

This article is cited in 4 scientific papers (total in 4 papers)

A geometric method for solving a series of integral Poincaré–Steklov equations

A. B. Bogatyrev

Institute of Numerical Mathematics, Russian Academy of Sciences

Abstract: Eigenvalues and eigenfunctions are explicitly found for a family of singular integral equations. It is shown how their discrete spectrum becomes continuous as the equation degenerates.

DOI: https://doi.org/10.4213/mzm1288

Full text: PDF file (410 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1998, 63:3, 302–310

Bibliographic databases:

UDC: 517.5
Received: 06.03.1996
Revised: 06.03.1997

Citation: A. B. Bogatyrev, “A geometric method for solving a series of integral Poincaré–Steklov equations”, Mat. Zametki, 63:3 (1998), 343–353; Math. Notes, 63:3 (1998), 302–310

Citation in format AMSBIB
\Bibitem{Bog98}
\by A.~B.~Bogatyrev
\paper A geometric method for solving a series of integral Poincar\'e--Steklov equations
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 3
\pages 343--353
\mathnet{http://mi.mathnet.ru/mz1288}
\crossref{https://doi.org/10.4213/mzm1288}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1631924}
\zmath{https://zbmath.org/?q=an:0920.45004}
\elib{http://elibrary.ru/item.asp?id=13276285}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 3
\pages 302--310
\crossref{https://doi.org/10.1007/BF02317774}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075783100003}


Linking options:
  • http://mi.mathnet.ru/eng/mz1288
  • https://doi.org/10.4213/mzm1288
  • http://mi.mathnet.ru/eng/mz/v63/i3/p343

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. B. Bogatyrev, “Poincaré–Steklov Integral Equations and the Riemann Monodromy Problem”, Funct. Anal. Appl., 34:2 (2000), 86–97  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. B. Bogatyrev, “PS$_3$ integral equations and projective structures on Riemann surfaces”, Sb. Math., 192:4 (2001), 479–514  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Bogatyrev A., “Poincaré-Steklov Integral Equations and Moduli of Pants”, Analysis and Mathematical Physics, Trends in Mathematics, eds. Gustafsson B., Vasilev A., Birkhauser Boston, 2009, 21–48  crossref  mathscinet  zmath  isi
    4. Bogatyrev A.B., “Pictorial Representation for Antisymmetric Eigenfunctions of Ps-3 Integral Equations”, Math. Phys. Anal. Geom., 13:2 (2010), 105–143  crossref  mathscinet  zmath  isi  elib  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:352
    Full text:114
    References:43
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020