RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1998, Volume 63, Issue 4, Pages 572–578 (Mi mz1317)  

This article is cited in 8 scientific papers (total in 8 papers)

Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry

L. G. Kurakin

Rostov State University

Abstract: Stability criteria of boundary equilibria for dynamical systems in the three critical cases, $(n,k)=(3,0), (2,1)$, and $(1,1)$, are obtained.

DOI: https://doi.org/10.4213/mzm1317

Full text: PDF file (199 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1998, 63:4, 503–508

Bibliographic databases:

UDC: 517.938
Received: 06.08.1996

Citation: L. G. Kurakin, “Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry”, Mat. Zametki, 63:4 (1998), 572–578; Math. Notes, 63:4 (1998), 503–508

Citation in format AMSBIB
\Bibitem{Kur98}
\by L.~G.~Kurakin
\paper Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 4
\pages 572--578
\mathnet{http://mi.mathnet.ru/mz1317}
\crossref{https://doi.org/10.4213/mzm1317}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1680931}
\zmath{https://zbmath.org/?q=an:0953.34043}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 4
\pages 503--508
\crossref{https://doi.org/10.1007/BF02311253}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075783100032}


Linking options:
  • http://mi.mathnet.ru/eng/mz1317
  • https://doi.org/10.4213/mzm1317
  • http://mi.mathnet.ru/eng/mz/v63/i4/p572

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kurakin L.G., Yudovich V.I., “Bifurcation of the branching of a cycle in n-parameter family of dynamic systems with cosymmetry”, Chaos, 7:3 (1997), 376–386  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. V. I. Yudovich, L. G. Kurakin, “Bifurcation of a limit cycle from the equilibrium submanifold in a system with multiple cosymmetries”, Math. Notes, 66:2 (1999), 254–258  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Kurakin, LG, “The Hopf bifurcation in a family of equilibria of a dynamical system with a multicosymmetry”, Differential Equations, 36:10 (2000), 1452  mathnet  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Kurakin, LG, “Bifurcations accompanying monotonic instability of an equilibrium of a cosymmetric dynamical system”, Chaos, 10:2 (2000), 311  crossref  mathscinet  adsnasa  isi  scopus  scopus
    5. Kurakin, LG, “Application of the Lyapunov-Schmidt method to the problem of the branching of a cycle from a family of equilibria in a system with multicosymmetry”, Siberian Mathematical Journal, 41:1 (2000), 114  mathnet  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Kurakin, LG, “On stability of boundary equilibria in systems with cosymmetry”, Siberian Mathematical Journal, 42:6 (2001), 1102  mathnet  crossref  mathscinet  isi  scopus  scopus
    7. Kurakin, LG, “Branching of 2D tori off an equilibrium of a cosymmetric system (codimension-1 bifurcation)”, Chaos, 11:4 (2001), 780  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. L. G. Kurakin, A. V. Kurdoglyan, “Semi-Invariant Form of Equilibrium Stability Criteria for Systems with One Cosymmetry”, Nelineinaya dinam., 15:4 (2019), 525–531  mathnet  crossref  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:346
    Full text:122
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020