RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1998, Volume 63, Issue 6, Pages 812–820 (Mi mz1351)  

This article is cited in 3 scientific papers (total in 4 papers)

Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$

P. A. Borodin

M. V. Lomonosov Moscow State University

Abstract: Let $Y$ be a Chebyshev subspace of a Banach space $X$. Then the single-valued metric projection operator $P_Y\colon X\to Y$ taking each $x\in X$ to the nearest element $y\in Y$ is well defined. Let $M$ be an arbitrary set, and let be a-finite measure on some $\sigma$-algebra $gS$ of subsets of $M$. We give a complete description of Chebyshev subspaces $Y\in L_1(M,\Sigma,\mu)$ for which the operator $P_Y$ is linear (for the space $L_1[0,1]$, this was done by Morris in 1980). We indicate a wide class of Chebyshev subspaces in $L_1(M,\Sigma,\mu)$, for which the operator $P_Y$ is nonlinear in general. We also prove that the operator $P_Y$, where $Y\subset C[K]$ is a nontrivial Chebyshev subspace and $K$ is a compactum, is linear if and only if the codimension of $Y$ in $C[K]$ is equal to 1.

DOI: https://doi.org/10.4213/mzm1351

Full text: PDF file (213 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1998, 63:6, 717–723

Bibliographic databases:

UDC: 517.982.256
Received: 13.05.1996
Revised: 05.03.1997

Citation: P. A. Borodin, “Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$”, Mat. Zametki, 63:6 (1998), 812–820; Math. Notes, 63:6 (1998), 717–723

Citation in format AMSBIB
\Bibitem{Bor98}
\by P.~A.~Borodin
\paper Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 6
\pages 812--820
\mathnet{http://mi.mathnet.ru/mz1351}
\crossref{https://doi.org/10.4213/mzm1351}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1679213}
\zmath{https://zbmath.org/?q=an:0917.41018}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 6
\pages 717--723
\crossref{https://doi.org/10.1007/BF02312764}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000076726600023}


Linking options:
  • http://mi.mathnet.ru/eng/mz1351
  • https://doi.org/10.4213/mzm1351
  • http://mi.mathnet.ru/eng/mz/v63/i6/p812

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. A. Borodin, V. M. Tikhomirov, “Kriterii gilbertovosti banakhova prostranstva, svyazannye s teoriei priblizhenii”, Matem. prosv., ser. 3, 3, MTsNMO, M., 1999, 189–207  mathnet
    2. I. A. Pyatyshev, “Operations on Approximatively Compact Sets”, Math. Notes, 82:5 (2007), 653–659  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. P. A. Borodin, “The Linearity Coefficient of the Metric Projection onto a Chebyshev Subspace”, Math. Notes, 85:1 (2009), 168–175  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. P. A. Borodin, “$2$-Chebyshev Subspaces in the Spaces $L_1$ and $C$”, Math. Notes, 91:6 (2012), 770–781  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:354
    Full text:131
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020