RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1998, Volume 63, Issue 6, Pages 935–950 (Mi mz1364)  

This article is cited in 1 scientific paper (total in 1 paper)

On $p$-adic functions preserving Haar measure

I. A. Yurov

Moscow Engineering Physics Institute (State University)

Abstract: Let $\{a_n\}_{n=0}^\infty$ be a uniformly distributed sequence of $p$-adic integers. In the present paper we study continuous functions close to differentiable ones (with respect to the $p$-adic metric); for these functions, either the sequence $\{f(a_n)\}_{n=0}^\infty$ is uniformly distributed over the ring of $p$-adic integers or, for all sufficiently large $k$, the sequences $\{f_k(\varphi_k(a_n))\}_{n=0}^\infty$ are uniformly distributed over the residue class ring $\operatorname{mod}p^k$, where $\varphi_k$ is the canonical epimorphism of the ring of $p$-adic integers to the residue class ring $\operatorname{mod}p^k$ and $f_k$ is the function induced by $f$ on the residue class ring $\operatorname{mod}p^k$ (i.e., $f_k(x)=f(\varphi_k(x))(\operatorname{mod}p^k)$). For instance, these functions can be used to construct generators of pseudorandom numbers.

DOI: https://doi.org/10.4213/mzm1364

Full text: PDF file (240 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1998, 63:6, 823–836

Bibliographic databases:

UDC: 511.6
Received: 31.01.1995
Revised: 29.04.1996

Citation: I. A. Yurov, “On $p$-adic functions preserving Haar measure”, Mat. Zametki, 63:6 (1998), 935–950; Math. Notes, 63:6 (1998), 823–836

Citation in format AMSBIB
\Bibitem{Yur98}
\by I.~A.~Yurov
\paper On $p$-adic functions preserving Haar measure
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 6
\pages 935--950
\mathnet{http://mi.mathnet.ru/mz1364}
\crossref{https://doi.org/10.4213/mzm1364}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1679226}
\zmath{https://zbmath.org/?q=an:0920.11051}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 6
\pages 823--836
\crossref{https://doi.org/10.1007/BF02312777}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000076726600036}


Linking options:
  • http://mi.mathnet.ru/eng/mz1364
  • https://doi.org/10.4213/mzm1364
  • http://mi.mathnet.ru/eng/mz/v63/i6/p935

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Jeong S., “Measure-Preservation and the Existence of a Root of P-Adic 1-Lipschitz Functions in Mahler'S Expansion”, P-Adic Numbers Ultrametric Anal. Appl., 10:3 (2018), 192–208  crossref  mathscinet  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:251
    Full text:121
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020