RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1998, Volume 64, Issue 1, Pages 24–36 (Mi mz1369)  

This article is cited in 3 scientific papers (total in 3 papers)

Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions

S. Galstyana, G. A. Karagulianb

a Yerevan State University
b Institute of Mathematics, National Academy of Sciences of Armenia

Abstract: In this paper we establish the following results, which are the multidimensional generalizations of well-known theorems:
  • 1) Suppose that a function $f\in C(\mathbb T^m)$ has no intervals of constancy in $\mathbb T^m$; then there exists a homeomorphism $\varphi\colon\mathbb T^m\to\mathbb T^m$ such that the Fourier series of the superposition $F=f\circ\varphi$ is divergent with respect to rectangles almost everywhere;
  • 2) for any integrable function $f\in L^1(\mathbb T^m)$, with $|f(\mathbf x)|\geqslant\alpha>0$, $x\in\mathbb T^m$, there exists a signum function $\varepsilon(\mathbf x)=\pm 1$, $\mathbf x\in\mathbb T^m$ such that the Fourier series of the product $f(\mathbf x)\varepsilon(\mathbf x)$ is divergent with respect to rectangles almost everywhere.


DOI: https://doi.org/10.4213/mzm1369

Full text: PDF file (237 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1998, 64:1, 20–30

Bibliographic databases:

UDC: 517
Received: 21.11.1996

Citation: S. Galstyan, G. A. Karagulian, “Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions”, Mat. Zametki, 64:1 (1998), 24–36; Math. Notes, 64:1 (1998), 20–30

Citation in format AMSBIB
\Bibitem{GalKar98}
\by S.~Galstyan, G.~A.~Karagulian
\paper Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 1
\pages 24--36
\mathnet{http://mi.mathnet.ru/mz1369}
\crossref{https://doi.org/10.4213/mzm1369}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1694010}
\zmath{https://zbmath.org/?q=an:0918.42005}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 1
\pages 20--30
\crossref{https://doi.org/10.1007/BF02307192}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000078147600004}


Linking options:
  • http://mi.mathnet.ru/eng/mz1369
  • https://doi.org/10.4213/mzm1369
  • http://mi.mathnet.ru/eng/mz/v64/i1/p24

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. L. Bloshanskii, “A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations”, Math. Notes, 71:4 (2002), 464–476  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Bloshanskii I., “Linear Transformations of R-N and Problems of Convergence of Multiple Fourier Integral”, Wavelet Analysis and Active Media Technology Vols 1-3, ed. Li J. Jaffard S. Suen C. Daugman J. Wickerhauser V. Torresani B. Yen J. Zhong N. Pal S., World Scientific Publ Co Pte Ltd, 2005, 1081–1091  crossref  isi
    3. Bloshanskii I.L., “Linear Transformations of R-N and Problems of Convergence of Fourier Series of Functions Which Equal Zero on Some Set”, Wavelet Analysis and Applications, Applied and Numerical Harmonic Analysis, ed. Tao Q. Mang V. Xu Y., Birkhauser Boston, 2007, 13–24  crossref  mathscinet  zmath  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:277
    Full text:82
    References:42
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019