RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2004, Volume 76, Issue 5, Pages 732–739 (Mi mz148)  

On a Class of Almost-Hermitian Structures on Tangent Bundles

B. V. Zayatuev

Moscow State Pedagogical University

Abstract: We construct a new almost-Hermitian structure of anti-invariant type on tangent bundles and deduce criteria for this structure to belong to all the Gray–Hervella classes. In particular, we prove that the tangent bundles over Kählerian and semi-Kählerian manifolds carry, respectively, a Kählerian and a semi-Kählerian structure.

DOI: https://doi.org/10.4213/mzm148

Full text: PDF file (186 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2004, 76:5, 682–688

Bibliographic databases:

UDC: 514.7
Received: 30.04.2003

Citation: B. V. Zayatuev, “On a Class of Almost-Hermitian Structures on Tangent Bundles”, Mat. Zametki, 76:5 (2004), 732–739; Math. Notes, 76:5 (2004), 682–688

Citation in format AMSBIB
\Bibitem{Zay04}
\by B.~V.~Zayatuev
\paper On a Class of Almost-Hermitian Structures on Tangent Bundles
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 5
\pages 732--739
\mathnet{http://mi.mathnet.ru/mz148}
\crossref{https://doi.org/10.4213/mzm148}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2129339}
\zmath{https://zbmath.org/?q=an:1086.53047}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 5
\pages 682--688
\crossref{https://doi.org/10.1023/B:MATN.0000049667.15551.02}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000226356700009}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-10344250484}


Linking options:
  • http://mi.mathnet.ru/eng/mz148
  • https://doi.org/10.4213/mzm148
  • http://mi.mathnet.ru/eng/mz/v76/i5/p732

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:156
    Full text:76
    References:19
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019