RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1997, Volume 61, Issue 2, Pages 278–296 (Mi mz1501)  

This article is cited in 1 scientific paper (total in 1 paper)

Saddle-point method and resurgent analysis

B. Yu. Sternina, V. E. Shatalovb

a M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences

Abstract: The topological part of the theory of the parameter-dependent Laplace integral is known to consist of two stages. At the first stage, the integration contour is reduced to a sum of paths of steepest descent for some value of the parameter. At the second stage, this decomposition (and hence the asymptotic expansion of the integral) is continued to all other parameter values. In the present paper, the second stage is studied with the help of resurgent analysis techniques.

DOI: https://doi.org/10.4213/mzm1501

Full text: PDF file (2563 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1997, 61:2, 227–241

Bibliographic databases:

UDC: 517.9
Received: 25.12.1996

Citation: B. Yu. Sternin, V. E. Shatalov, “Saddle-point method and resurgent analysis”, Mat. Zametki, 61:2 (1997), 278–296; Math. Notes, 61:2 (1997), 227–241

Citation in format AMSBIB
\Bibitem{SteSha97}
\by B.~Yu.~Sternin, V.~E.~Shatalov
\paper Saddle-point method and resurgent analysis
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 2
\pages 278--296
\mathnet{http://mi.mathnet.ru/mz1501}
\crossref{https://doi.org/10.4213/mzm1501}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1619947}
\zmath{https://zbmath.org/?q=an:0915.58067}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 2
\pages 227--241
\crossref{https://doi.org/10.1007/BF02355733}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XM39800026}


Linking options:
  • http://mi.mathnet.ru/eng/mz1501
  • https://doi.org/10.4213/mzm1501
  • http://mi.mathnet.ru/eng/mz/v61/i2/p278

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. A. Kalyakin, “Phantom asymptotic solutions”, Ufa Math. J., 6:2 (2014), 44–65  mathnet  crossref  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:330
    Full text:75
    References:13
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018