|
This article is cited in 17 scientific papers (total in 17 papers)
Comparison of various generalizations of continued fractions
A. D. Bruno, V. I. Parusnikov M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
Abstract:
We use the Euler, Jacobi, Poincaré, and Brun matrix algorithms as well as two new algorithms to evaluate the continued fraction expansions of two vectors $L$ related to two Davenport cubic forms $g_1$ and $g_2$. The Klein polyhedra of $g_1$ and $g_2$ were calculated in another paper. Here the integer convergents $P_k$ given by the cited algorithms are considered with respect to the Klein polyhedra. We also study the periods of these expansions. It turns out that only the Jacobi and Bryuno algorithms can be regarded as satisfactory.
DOI:
https://doi.org/10.4213/mzm1508
Full text:
PDF file (226 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 1997, 61:3, 278–286
Bibliographic databases:
UDC:
511.36+514.172.45 Received: 14.11.1995 Revised: 10.10.1996
Citation:
A. D. Bruno, V. I. Parusnikov, “Comparison of various generalizations of continued fractions”, Mat. Zametki, 61:3 (1997), 339–348; Math. Notes, 61:3 (1997), 278–286
Citation in format AMSBIB
\Bibitem{BruPar97}
\by A.~D.~Bruno, V.~I.~Parusnikov
\paper Comparison of various generalizations of continued fractions
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 3
\pages 339--348
\mathnet{http://mi.mathnet.ru/mz1508}
\crossref{https://doi.org/10.4213/mzm1508}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1619743}
\zmath{https://zbmath.org/?q=an:0915.11040}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 3
\pages 278--286
\crossref{https://doi.org/10.1007/BF02355409}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XR25700003}
Linking options:
http://mi.mathnet.ru/eng/mz1508https://doi.org/10.4213/mzm1508 http://mi.mathnet.ru/eng/mz/v61/i3/p339
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Bruno, A, “Algorithms of the local nonlinear analysis”, Nonlinear Analysis-Theory Methods & Applications, 30:7 (1997), 4683
-
Bruno, AD, “Newton polyhedra and power transformations”, Mathematics and Computers in Simulation, 45:5–6 (1998), 429
-
V. I. Parusnikov, “Klein polyhedra for the fourth extremal cubic form”, Math. Notes, 67:1 (2000), 87–102
-
Bruno A., “Algorithms of the Asymptotic Nonlinear Analysis”, Direct and Inverse Problems of Mathematical Physics, International Society for Analysis, Applications and Computation, 5, eds. Gilbert R., Kajiwara J., Xu Y., Springer, 2000, 1–20
-
Bruno, AD, “Power expansions of solutions to a single algebraic or differential equation”, Doklady Mathematics, 64:2 (2001), 160
-
Pustyl'nikov, LD, “Infinite-dimensional generalized continued fractions, distribution of quadratic residues and non-residues, and ergodic theory”, Infinite Dimensional Analysis Quantum Probability and Related Topics, 5:4 (2002), 555
-
L. D. Pustyl'nikov, “Generalized continued fractions and ergodic theory”, Russian Math. Surveys, 58:1 (2003), 109–159
-
V. I. Parusnikov, “Klein polyhedra for three extremal cubic forms”, Math. Notes, 77:4 (2005), 523–538
-
Bruno, AD, “Structure of best diophantine approximations”, Doklady Mathematics, 71:3 (2005), 396
-
V. N. Berestovskii, Yu. G. Nikonorov, “Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers”, Siberian Adv. Math., 17:4 (2007), 268–290
-
Karpenkov, ON, “Completely empty pyramids on integer lattices and two-dimensional faces of multidimensional continued fractions”, Monatshefte fur Mathematik, 152:3 (2007), 217
-
A. D. Bruno, “Structure of the best diophantine approximations and multidimensional generalizations of the continued fraction”, Chebyshevskii sb., 11:1 (2010), 68–73
-
V. I. Parusnikov, “Chetyrekhmernoe obobschenie tsepnykh drobei”, Preprinty IPM im. M. V. Keldysha, 2011, 078, 16 pp.
-
A. D. Bryuno, “Universalnoe obobschenie algoritma tsepnoi drobi”, Chebyshevskii sb., 16:2 (2015), 35–65
-
Murru N., “on the Periodic Writing of Cubic Irrationals and a Generalization of Redei Functions”, Int. J. Number Theory, 11:3 (2015), 779–799
-
V. G. Zhuravlev, “Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions”, J. Math. Sci. (N. Y.), 225:6 (2017), 924–949
-
A. A. Lodkin, “Parus Kleina i diofantovy priblizheniya vektora”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XXX, Zap. nauchn. sem. POMI, 481, POMI, SPb., 2019, 63–73
|
Number of views: |
This page: | 500 | Full text: | 198 | References: | 48 | First page: | 1 |
|