|
This article is cited in 7 scientific papers (total in 7 papers)
Clone classification of dually discriminator algebras with finite support
S. S. Marchenkov M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
Abstract:
Dually discriminator algebras are considered up to clones generated by the algebra operations. In terms of binary relations, all clones of the operators on a finite set that contain the Pixley dual discriminator are efficiently described. As a consequence, a similar clone classification of quasi-primal algebras with finite support is determined.
DOI:
https://doi.org/10.4213/mzm1510
Full text:
PDF file (183 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 1997, 61:3, 295–300
Bibliographic databases:
UDC:
512.57 Received: 13.12.1994
Citation:
S. S. Marchenkov, “Clone classification of dually discriminator algebras with finite support”, Mat. Zametki, 61:3 (1997), 359–366; Math. Notes, 61:3 (1997), 295–300
Citation in format AMSBIB
\Bibitem{Mar97}
\by S.~S.~Marchenkov
\paper Clone classification of dually discriminator algebras with finite support
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 3
\pages 359--366
\mathnet{http://mi.mathnet.ru/mz1510}
\crossref{https://doi.org/10.4213/mzm1510}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1619751}
\zmath{https://zbmath.org/?q=an:0913.08004}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 3
\pages 295--300
\crossref{https://doi.org/10.1007/BF02355411}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XR25700005}
Linking options:
http://mi.mathnet.ru/eng/mz1510https://doi.org/10.4213/mzm1510 http://mi.mathnet.ru/eng/mz/v61/i3/p359
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Marchenkov, SS, “A-classification of idempotent functions of many-valued logic”, Discrete Applied Mathematics, 135:1–3 (2004), 183
-
S. S. Marchenkov, “Equational closure”, Discrete Math. Appl., 15:3 (2005), 289–298
-
J. Appl. Industr. Math., 2:4 (2008), 542–549
-
S. S. Marchenkov, “The closure operator in many-valued logic based on functional equations”, J. Appl. Industr. Math., 5:3 (2011), 383–390
-
Marchenkov S.S., “Fe-klassifikatsiya funktsii mnogoznachnoi logiki”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 2 (2011), 32–39
-
S. S. Marchenkov, “Closed classed of three-valued logic that contain essentially multiplace functions”, Discrete Math. Appl., 25:4 (2015), 233–240
-
N. L. Polyakov, M. V. Shamolin, “Teoremy o reduktsii v teorii kollektivnogo vybora”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 46–51
|
Number of views: |
This page: | 216 | Full text: | 102 | References: | 20 | First page: | 1 |
|