|
This article is cited in 1 scientific paper (total in 1 paper)
On certain spectral properties of a quadratic self-adjoint matrix pencil with dominating main diagonals
L. I. Sukhocheva Voronezh State University
Abstract:
Sufficient conditions for the “separation of the spectrum” of a quadratic matrix pencil with self-adjoint coefficients are found. A criterion for the representability of a positive operator in a finite-dimensional space in the form of a matrix with dominating main diagonal in each orthonormal basis is obtained.
DOI:
https://doi.org/10.4213/mzm1512
Full text:
PDF file (191 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 1997, 61:3, 313–320
Bibliographic databases:
UDC:
517 Received: 10.02.1995
Citation:
L. I. Sukhocheva, “On certain spectral properties of a quadratic self-adjoint matrix pencil with dominating main diagonals”, Mat. Zametki, 61:3 (1997), 381–390; Math. Notes, 61:3 (1997), 313–320
Citation in format AMSBIB
\Bibitem{Suk97}
\by L.~I.~Sukhocheva
\paper On certain spectral properties of a~quadratic self-adjoint matrix pencil with dominating main diagonals
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 3
\pages 381--390
\mathnet{http://mi.mathnet.ru/mz1512}
\crossref{https://doi.org/10.4213/mzm1512}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1619759}
\zmath{https://zbmath.org/?q=an:0912.47009}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 3
\pages 313--320
\crossref{https://doi.org/10.1007/BF02355413}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XR25700007}
Linking options:
http://mi.mathnet.ru/eng/mz1512https://doi.org/10.4213/mzm1512 http://mi.mathnet.ru/eng/mz/v61/i3/p381
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. S. Kostenko, “On the Defect Index of Quadratic Self-Adjoint Operator Pencils”, Math. Notes, 72:2 (2002), 285–290
|
Number of views: |
This page: | 248 | Full text: | 97 | References: | 28 | First page: | 1 |
|