|
An additive divisor problem with a growing number of factors
N. M. Timofeev Vladimir State Pedagogical University
Abstract:
Let $\tau_k(n)$ be the number of representations of $n$ as the product of $k$ positive factors, $\tau_2(n)=\tau(n)$. The asymptotics of $\sum_{n\le x}\tau_k(n)\tau(n+1)$ for $80k^{10}(\ln\ln x)^3\le\ln x$ is shown to be uniform with respect to $k$.
DOI:
https://doi.org/10.4213/mzm1513
Full text:
PDF file (236 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 1997, 61:3, 321–332
Bibliographic databases:
UDC:
511 Received: 15.11.1995
Citation:
N. M. Timofeev, “An additive divisor problem with a growing number of factors”, Mat. Zametki, 61:3 (1997), 391–406; Math. Notes, 61:3 (1997), 321–332
Citation in format AMSBIB
\Bibitem{Tim97}
\by N.~M.~Timofeev
\paper An additive divisor problem with a~growing number of factors
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 3
\pages 391--406
\mathnet{http://mi.mathnet.ru/mz1513}
\crossref{https://doi.org/10.4213/mzm1513}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1619763}
\zmath{https://zbmath.org/?q=an:0969.11032}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 3
\pages 321--332
\crossref{https://doi.org/10.1007/BF02355414}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XR25700008}
Linking options:
http://mi.mathnet.ru/eng/mz1513https://doi.org/10.4213/mzm1513 http://mi.mathnet.ru/eng/mz/v61/i3/p391
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 223 | Full text: | 91 | References: | 29 | First page: | 2 |
|