|
This article is cited in 4 scientific papers (total in 4 papers)
Rings over which each module possesses a maximal submodule
A. A. Tuganbaev Moscow Power Engineering Institute (Technical University)
Abstract:
Right Bass rings are investigated, that is, rings over which any nonzero right module has a maximal submodule. In particular, it is proved that if any prime quotient ring of a ring $A$ is algebraic over its center, then $A$ is a right perfect ring $\iff$ $A$ is a right Bass ring that contains no infinite set of orthogonal idempotents.
DOI:
https://doi.org/10.4213/mzm1514
Full text:
PDF file (196 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 1997, 61:3, 333–339
Bibliographic databases:
UDC:
512.55 Received: 05.09.1995
Citation:
A. A. Tuganbaev, “Rings over which each module possesses a maximal submodule”, Mat. Zametki, 61:3 (1997), 407–415; Math. Notes, 61:3 (1997), 333–339
Citation in format AMSBIB
\Bibitem{Tug97}
\by A.~A.~Tuganbaev
\paper Rings over which each module possesses a~maximal submodule
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 3
\pages 407--415
\mathnet{http://mi.mathnet.ru/mz1514}
\crossref{https://doi.org/10.4213/mzm1514}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1619767}
\zmath{https://zbmath.org/?q=an:0919.16004}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 3
\pages 333--339
\crossref{https://doi.org/10.1007/BF02355415}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XR25700009}
Linking options:
http://mi.mathnet.ru/eng/mz1514https://doi.org/10.4213/mzm1514 http://mi.mathnet.ru/eng/mz/v61/i3/p407
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Xue, WM, “Two questions on rings whose modules have maximal submodules”, Communications in Algebra, 28:5 (2000), 2633
-
Artemovych, OD, “Rigid right bass rings”, Algebra Colloquium, 11:4 (2004), 527
-
A. A. Tuganbaev, “Modules with Nakayama's property”, J. Math. Sci., 193:4 (2013), 601–605
-
Alhilali H. Ibrahim Ya. Puninski G. Yousif M., “When R Is a Testing Module For Projectivity?”, J. Algebra, 484 (2017), 198–206
|
Number of views: |
This page: | 579 | Full text: | 99 | References: | 46 | First page: | 4 |
|