RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1997, Volume 61, Issue 6, Pages 855–863 (Mi mz1569)  

A generalization of Laguerre's theorems on zeros of entire functions

S. G. Merzlyakov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: We prove some results generalizing the classical Laguerre theorems about the multiplicity and the number of zeros of the function
$$ \sum_{n=0}^\infty\varphi(n)\frac{f^{(n)}(0)}{n!}z^n, $$
Some specific applications are given.

DOI: https://doi.org/10.4213/mzm1569

Full text: PDF file (181 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1997, 61:6, 717–723

Bibliographic databases:

UDC: 517.547.2
Received: 10.02.1995

Citation: S. G. Merzlyakov, “A generalization of Laguerre's theorems on zeros of entire functions”, Mat. Zametki, 61:6 (1997), 855–863; Math. Notes, 61:6 (1997), 717–723

Citation in format AMSBIB
\Bibitem{Mer97}
\by S.~G.~Merzlyakov
\paper A generalization of Laguerre's theorems on zeros of entire functions
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 6
\pages 855--863
\mathnet{http://mi.mathnet.ru/mz1569}
\crossref{https://doi.org/10.4213/mzm1569}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1629801}
\zmath{https://zbmath.org/?q=an:0913.30018}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 6
\pages 717--723
\crossref{https://doi.org/10.1007/BF02361213}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997YE52200025}


Linking options:
  • http://mi.mathnet.ru/eng/mz1569
  • https://doi.org/10.4213/mzm1569
  • http://mi.mathnet.ru/eng/mz/v61/i6/p855

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:240
    Full text:102
    References:50
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020