Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1997, Volume 61, Issue 6, Pages 931–934 (Mi mz1576)  

This article is cited in 9 scientific papers (total in 9 papers)

Brief Communications

The normal form of germs of four-dimensional real submanifolds in $\mathbb C^5$ at generic $\mathbb{RC}$-singular points

V. K. Beloshapka

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

DOI: https://doi.org/10.4213/mzm1576

Full text: PDF file (168 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1997, 61:6, 777–779

Bibliographic databases:

Received: 01.03.1997

Citation: V. K. Beloshapka, “The normal form of germs of four-dimensional real submanifolds in $\mathbb C^5$ at generic $\mathbb{RC}$-singular points”, Mat. Zametki, 61:6 (1997), 931–934; Math. Notes, 61:6 (1997), 777–779

Citation in format AMSBIB
\Bibitem{Bel97}
\by V.~K.~Beloshapka
\paper The normal form of germs of four-dimensional real submanifolds in~$\mathbb C^5$ at generic $\mathbb{RC}$-singular points
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 6
\pages 931--934
\mathnet{http://mi.mathnet.ru/mz1576}
\crossref{https://doi.org/10.4213/mzm1576}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1629829}
\zmath{https://zbmath.org/?q=an:0917.32015}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 6
\pages 777--779
\crossref{https://doi.org/10.1007/BF02361220}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997YE52200032}


Linking options:
  • http://mi.mathnet.ru/eng/mz1576
  • https://doi.org/10.4213/mzm1576
  • http://mi.mathnet.ru/eng/mz/v61/i6/p931

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Baouendi, MS, “Local geometric properties of real submanifolds in complex space”, Bulletin of the American Mathematical Society, 37:3 (2000), 309  crossref  mathscinet  zmath  isi
    2. Baouendi, MS, “Equivalences of real submanifolds in complex space”, Journal of Differential Geometry, 59:2 (2001), 301  crossref  mathscinet  zmath  isi  scopus
    3. Coffman, A, “Analytic stability of the CR cross-cap”, Pacific Journal of Mathematics, 226:2 (2006), 221  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Coffman, A, “CR singularities of real threefolds in C-4”, Advances in Geometry, 6:1 (2006), 109  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Coffman A., “Unfolding CR singularities”, Memoirs of the American Mathematical Society, 205:962 (2010), 1–+  crossref  mathscinet  isi  scopus
    6. Zaitsev D., “Formal and Finite Order Equivalences”, Math. Z., 269:3-4 (2011), 687–696  crossref  mathscinet  zmath  isi  scopus
    7. Kossovskiy I., Zaitsev D., “Convergent Normal Form and Canonical Connection For Hypersurfaces of Finite Type in C-2”, Adv. Math., 281 (2015), 670–705  crossref  mathscinet  zmath  isi  elib  scopus
    8. Kossovskiy I., Zaitsev D., “Convergent Normal Form For Real Hypersurfaces At a Generic Levi-Degeneracy”, J. Reine Angew. Math., 749 (2019), 201–225  crossref  mathscinet  zmath  isi  scopus
    9. Gupta P., Shafikov R., “Polynomially Convex Embeddings of Even-Dimensional Compact Manifolds”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 21:SI (2020), 1649–1666  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:204
    Full text:192
    References:38
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021