RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1997, Volume 62, Issue 3, Pages 363–371 (Mi mz1618)  

Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber–Schauder system

S. S. Volosivets

Saratov State University named after N. G. Chernyshevsky

Abstract: In this paper the best polynomial approximation in terms of the system of Faber–Schauder functions in the space $C_p[0,1]$ is studied. The constant in the estimate of Jackson's inequality for the best approximation in the metric of $C_p[0,1]$ and the estimate of the modulus of continuity $\omega_{1-1/p}$ are refined.

DOI: https://doi.org/10.4213/mzm1618

Full text: PDF file (187 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1997, 62:3, 306–313

Bibliographic databases:

UDC: 517
Received: 11.01.1996

Citation: S. S. Volosivets, “Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber–Schauder system”, Mat. Zametki, 62:3 (1997), 363–371; Math. Notes, 62:3 (1997), 306–313

Citation in format AMSBIB
\Bibitem{Vol97}
\by S.~S.~Volosivets
\paper Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 363--371
\mathnet{http://mi.mathnet.ru/mz1618}
\crossref{https://doi.org/10.4213/mzm1618}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1620058}
\zmath{https://zbmath.org/?q=an:0923.41009}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 306--313
\crossref{https://doi.org/10.1007/BF02360871}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000072500900005}


Linking options:
  • http://mi.mathnet.ru/eng/mz1618
  • https://doi.org/10.4213/mzm1618
  • http://mi.mathnet.ru/eng/mz/v62/i3/p363

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:237
    Full text:115
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020