RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1997, Volume 62, Issue 3, Pages 391–403 (Mi mz1621)  

This article is cited in 5 scientific papers (total in 5 papers)

Sphericity of rigid hypersurfaces in $\mathbb C^2$

A. V. Loboda

Voronezh Engineering Building Academy

Abstract: The sphericity of hypersurfaces in the space $\mathbb C^2_{z,w}$ (locally) representable by equations of the form $\operatorname{Im}v=F(z,\overline z)$ is discussed. Invoking the notion of Moser normal form, a necessary and sufficient condition for these surfaces to be spherical is constructed. It is a partial differential third-order equation for the function $\mu(z,\overline z)=F_{zz\overline z}/F_{z\overline z}$. The similarity between this equation and the sphericity criterion for tube hypersurfaces makes it possible to reduce the problem to the familiar description of spherical tubes. Reduction mappings are written out explicitly. As a particular case, a description of Reinhardt spherical surfaces defined by the equations $\operatorname{Im}w=\alpha(|z|^2)$ is given.

DOI: https://doi.org/10.4213/mzm1621

Full text: PDF file (223 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1997, 62:3, 329–338

Bibliographic databases:

UDC: 514.764.274
Received: 19.01.1996

Citation: A. V. Loboda, “Sphericity of rigid hypersurfaces in $\mathbb C^2$”, Mat. Zametki, 62:3 (1997), 391–403; Math. Notes, 62:3 (1997), 329–338

Citation in format AMSBIB
\Bibitem{Lob97}
\by A.~V.~Loboda
\paper Sphericity of rigid hypersurfaces in $\mathbb C^2$
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 391--403
\mathnet{http://mi.mathnet.ru/mz1621}
\crossref{https://doi.org/10.4213/mzm1621}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1620070}
\zmath{https://zbmath.org/?q=an:0923.32017}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 329--338
\crossref{https://doi.org/10.1007/BF02360874}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000072500900008}


Linking options:
  • http://mi.mathnet.ru/eng/mz1621
  • https://doi.org/10.4213/mzm1621
  • http://mi.mathnet.ru/eng/mz/v62/i3/p391

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Isaev A.V., “Zero CR-curvature equations for rigid and tube hypersurfaces”, Complex Variables and Elliptic Equations, 54:3–4 (2009), 317–344  crossref  mathscinet  zmath  isi  scopus
    2. Isaev A., “Spherical Tube Hypersurfaces”, Spherical Tube Hypersurfaces, Lect. Notes Math., 2020, Springer-Verlag Berlin, 2011, 1–217  crossref  mathscinet  isi  elib
    3. Ezhov V., Schmalz G., “The zero curvature equation for rigid CR-manifolds”, Complex Var. Elliptic Equ., 61:4 (2016), 443–447  crossref  mathscinet  zmath  isi  elib  scopus
    4. Ebenfelt P., Son D.N., “Umbilical Points on Three Dimensional Strictly Pseudoconvex Cr Manifolds i: Manifolds With U(1)-Action”, Math. Ann., 368:1-2 (2017), 537–560  crossref  mathscinet  zmath  isi  scopus
    5. M. A. Stepanova, “Ob avtomorfizmakh CR-podmnogoobrazii kompleksnogo gilbertova prostranstva”, Sib. elektron. matem. izv., 17 (2020), 126–140  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:243
    Full text:101
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020