RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1997, Volume 62, Issue 3, Pages 451–467 (Mi mz1627)  

This article is cited in 7 scientific papers (total in 7 papers)

Del Pezzo surfaces with nonrational singularities

I. A. Cheltsov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Normal algebraic surfaces $X$ with the property $\operatorname{rk}(\operatorname{Div}(X)\otimes\mathbb Q/{\equiv})=1$, numerically ample canonical classes, and nonrational singularities are classified. It is proved, in particular, that any such surface $X$ is a contraction of an exceptional section of a (possibly singular) relatively minimal ruled surface $\widetilde X$ with a nonrational base. Moreover, $\widetilde X$ is uniquely determined by the surface $X$.

DOI: https://doi.org/10.4213/mzm1627

Full text: PDF file (244 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1997, 62:3, 377–389

Bibliographic databases:

UDC: 512.774.42
Received: 02.02.1996

Citation: I. A. Cheltsov, “Del Pezzo surfaces with nonrational singularities”, Mat. Zametki, 62:3 (1997), 451–467; Math. Notes, 62:3 (1997), 377–389

Citation in format AMSBIB
\Bibitem{Che97}
\by I.~A.~Cheltsov
\paper Del Pezzo surfaces with nonrational singularities
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 451--467
\mathnet{http://mi.mathnet.ru/mz1627}
\crossref{https://doi.org/10.4213/mzm1627}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1620015}
\zmath{https://zbmath.org/?q=an:0939.14017}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 377--389
\crossref{https://doi.org/10.1007/BF02360880}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000072500900014}


Linking options:
  • http://mi.mathnet.ru/eng/mz1627
  • https://doi.org/10.4213/mzm1627
  • http://mi.mathnet.ru/eng/mz/v62/i3/p451

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Schroer, S, “Normal del Pezzo surfaces containing a nonrational singularity”, Manuscripta Mathematica, 104:2 (2001), 257  crossref  mathscinet  zmath  isi  scopus  scopus
    2. I. A. Cheltsov, “Birationally superrigid cyclic triple spaces”, Izv. Math., 68:6 (2004), 1229–1275  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. I. A. Cheltsov, “Birationally rigid Fano varieties”, Russian Math. Surveys, 60:5 (2005), 875–965  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Kojima, H, “Notes on minimal compactifications of the affine plane”, Annali Di Matematica Pura Ed Applicata, 188:1 (2009), 153  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Kojima H. Takahashi T., “Normal Del Pezzo Surfaces of Rank One with Log Canonical Singularities”, J. Algebra, 360 (2012), 53–70  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. Hwang D., Park J., “Characterization of Log Del Pezzo Pairs Via Anticanonical Models”, Math. Z., 280:1-2 (2015), 211–229  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. Lehmann B., Tanimoto Sh., Tschinkel Yu., “Balanced Line Bundles on Fano Varieties”, J. Reine Angew. Math., 743 (2018), 91–131  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:140
    Full text:56
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019