RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1997, Volume 62, Issue 6, Pages 898–909 (Mi mz1679)  

This article is cited in 6 scientific papers (total in 6 papers)

Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations

V. V. Smagin

Voronezh State University

Abstract: Solutions continuously differentiable with respect to time of parabolic equations in Hilbert space are obtained by the projective-difference method approximately. The discretization of the problem is carried out in the spatial variables using Galerkin's method, and in the time variable using Euler's implicit method. Strong-norm error estimates for approximate solutions are obtained. These estimates not only allow one to establish the convergence of the approximate solutions to the exact ones but also yield numerical characteristics of the rates of convergence. In particular, order-sharp error estimates for finite element subspaces are obtained.

DOI: https://doi.org/10.4213/mzm1679

Full text: PDF file (184 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1997, 62:6, 752–761

Bibliographic databases:

UDC: 517.988.8
Received: 15.03.1994
Revised: 16.06.1997

Citation: V. V. Smagin, “Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations”, Mat. Zametki, 62:6 (1997), 898–909; Math. Notes, 62:6 (1997), 752–761

Citation in format AMSBIB
\Bibitem{Sma97}
\by V.~V.~Smagin
\paper Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 6
\pages 898--909
\mathnet{http://mi.mathnet.ru/mz1679}
\crossref{https://doi.org/10.4213/mzm1679}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1635182}
\zmath{https://zbmath.org/?q=an:0916.65097}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 6
\pages 752--761
\crossref{https://doi.org/10.1007/BF02355464}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075396200030}


Linking options:
  • http://mi.mathnet.ru/eng/mz1679
  • https://doi.org/10.4213/mzm1679
  • http://mi.mathnet.ru/eng/mz/v62/i6/p898

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Smagin, VV, “Energy error estimates for the projection-difference method with the Crank-Nicolson scheme for parabolic equations”, Siberian Mathematical Journal, 42:3 (2001), 568  mathnet  crossref  mathscinet  zmath  isi  scopus
    2. S. E. Zhelezovsky, “Estimates for the rate of convergence of the projection-difference method for hyperbolic equations”, Russian Math. (Iz. VUZ), 46:1 (2002), 19–28  mathnet  mathscinet  zmath  elib
    3. V. V. Smagin, “Strong-Norm Error Estimates for the Projective-Difference Method for Parabolic Equations with Modified Crank–Nicolson Scheme”, Math. Notes, 74:6 (2003), 864–873  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. V. V. Smagin, “On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations”, Math. Notes, 78:6 (2005), 841–852  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Vinogradova, PV, “Error estimates for a projection-difference method for a linear differential-operator equation”, Differential Equations, 44:7 (2008), 970  crossref  mathscinet  zmath  isi  elib  scopus
    6. Chaikovs'kyi A.V., “Functions of Shift Operator and their Applications to Difference Equations”, Ukr. Math. J., 62:10 (2011), 1635–1648  crossref  mathscinet  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:234
    Full text:89
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020